Confusion Matrix混淆矩阵

Posted kkkky

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Confusion Matrix混淆矩阵相关的知识,希望对你有一定的参考价值。

混淆矩阵

在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具。其中,矩阵的每一列表示的是模型预测的样本情况;矩阵的每一行表示的样本的真实情况。

举个经典的二分类例子:

技术分享图片

混淆矩阵是除了ROC曲线和AUC之外的另一个判断分类好坏程度的方法,通过混淆矩阵我们可以很清楚的看出每一类样本的识别正误情况

混淆矩阵比模型的精度的评价指标更能够详细地反映出模型的”好坏”。模型的精度指标,在正负样本数量不均衡的情况下,会出现容易误导的结果。

基本概念

【1】 True Positive

  真正类(TP),样本的真实类别是正类,并且模型识别的结果也是正类。

【2】False Negative

  假负类(FN),样本的真实类别是正类,但是模型将其识别成为负类。

【3】 False Positive

  假正类(FP),样本的真实类别是负类,但是模型将其识别成为正类。

【4】True Negative

  真负类(TN),样本的真实类别是负类,并且模型将其识别成为负类。

评价指标

【1】Accuracy(正确率)

  模型的精度,即模型识别正确的个数 / 样本的总个数 。一般情况下,模型的精度越高,说明模型的效果越好。

  技术分享图片

【2】Precision(准确率)

  =查准率 ,在模型识别为正类的样本中,真正为正类的样本所占的比例。 一般情况下,查准率越高,说明模型的效果越好。

  技术分享图片

 

关于Accuracy(正确率)Precision(准确率)的区别

分类正确率(Accuracy),不管是哪个类别,只要预测正确,其数量都放在分子上,而分母是全部数据数量,这说明正确率是对全部数据的判断。

而准确率在分类中对应的是某个类别,分子是预测该类别正确的数量,分母是预测为该类别的全部数据的数量。

或者说,Accuracy是对分类器整体上的正确率的评价,而Precision是分类器预测为某一个类别的正确率的评价。

 

 

【3】Recall(召回率)

  =查全率,表示的是,模型识别为正类的样本的数量,占总的正类样本数量的比值。 一般情况下,Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。

  技术分享图片

 

【4】Specificity

  表示的是,模型识别为负类的样本的数量,占总的负类样本数量的比值。

  技术分享图片

 

【5】_Score

  准确率和召回率的调和平均,比较常用的是F1

  技术分享图片

【6】F1_Score

  β=1的情况,F1-Score的值是从0到1的,1是最好,0是最差

  技术分享图片

 

以上是关于Confusion Matrix混淆矩阵的主要内容,如果未能解决你的问题,请参考以下文章

confusion_matrix(混淆矩阵)

使用 plot_confusion_matrix 绘制多个混淆矩阵

如何反转 Sklearn `plot_confusion_matrix` 函数中的混淆矩阵? [关闭]

R语言使用caret包的confusionMatrix函数计算混淆矩阵使用编写的自定义函数可视化混淆矩阵(confusion matrix)

混淆矩阵(Confusion Matrix)

R语言自定义多分类混淆矩阵可视化函数(mutlti class confusion matrix)R语言多分类混淆矩阵可视化