HDU 6351 Naive Operations(线段树)

Posted profish

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 6351 Naive Operations(线段树)相关的知识,希望对你有一定的参考价值。

题目:

http://acm.hdu.edu.cn/showproblem.php?pid=6315

Naive Operations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)


Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ri=l?ai/bi?
 

 

Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form ‘add l r‘ or ‘query l r‘, representing an operation.
1n,q1000001lrn, there‘re no more than 5 test cases.
 

 

Output
Output the answer for each ‘query‘, each one line.
 

 

Sample Input
5 12 1 5 2 4 3 add 1 4 query 1 4 add 2 5 query 2 5 add 3 5 query 1 5 add 2 4 query 1 4 add 2 5 query 2 5 add 2 2 query 1 5
 

 

Sample Output
1 1 2 4 4 6
 
题意:给定一个初始数组b和一个初始值全部为0的数组a,每次操作可以在给定的区间(l,r)内让a[i](l=<i<=r)加一,或者查询区间区间(l,r)中a[i]/b[i](l=<i<=r)(取整)的和。
思路:
用线段树存放a数组,做好最小更新标记,达到则向下更新
代码:
#include<bits/stdc++.h>
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pqueue priority_queue
#define NEW(a,b) memset(a,b,sizeof(a))
const double pi=4.0*atan(1.0);
const double e=exp(1.0);
const int maxn=3e6+8;
typedef long long LL;
typedef unsigned long long ULL;
//typedef pair<LL,LL> P;
const LL mod=1e9+7;
using namespace std;
struct node{
    LL l,r,sum,g,mi;
    LL lazy;
    LL mid(){
        return (l+r)>>1;
    }
}a[maxn];
int b[maxn];
void build(int l,int r,int num){
    a[num].l=l;
    a[num].r=r;
    a[num].lazy=0;
    if(l==r){
        a[num].sum=0;
        a[num].g=0;
        a[num].mi=b[l];
    }
    else{
        build(l,a[num].mid(),num<<1);
        build(a[num].mid()+1,r,(num<<1)|1);
        a[num].g=a[num<<1].g+a[(num<<1)|1].g;
        a[num].mi=min(a[num<<1].mi,a[(num<<1)|1].mi);
    }
}
void as(int d)
{
    if(a[d].lazy)
    {
        a[(d<<1)].lazy+=a[d].lazy;
        a[(d<<1|1)].lazy+=a[d].lazy;
        a[(d<<1)].mi-=a[d].lazy;
        a[(d<<1|1)].mi-=a[d].lazy;
        a[d].lazy=0;
    }
}
LL Find(int l,int r,int num){
    if(a[num].l==l&&a[num].r==r){
        return a[num].g;
    }
    if(l>a[num].mid()){
        return Find(l,r,(num<<1)|1);
    }
    else if(r<=a[num].mid()){
        return Find(l,r,num<<1);
    }
    else{
        return Find(l,a[num].mid(),num<<1)+Find(a[num].mid()+1,r,(num<<1)|1);
    }
}
void add(int l,int r,int num,LL x){
    if(a[num].l==l&&a[num].r==r||x==0){
        a[num].lazy+=x;
        a[num].mi-=x;
        if(a[num].mi>0){
            return ;
        }
        else if(l!=r){
            as(num);
            add(l,a[num].mid(),num<<1,0);
            add(a[num].mid()+1,r,(num<<1)|1,0);
            a[num].mi=min(a[num<<1].mi,a[(num<<1)|1].mi);
            a[num].g=a[num<<1].g+a[(num<<1)|1].g;
            return;
        }
    }
    if(l==r&&a[num].l==l&&a[num].r==r)
    {
        if(a[num].mi<=0)
        {
            a[num].mi=a[num].lazy=0;
            a[num].mi=b[l];
            a[num].g++;
        }
        return;
    }
    as(num);
    if(l>a[num].mid()){
        add(l,r,(num<<1)|1,x);
    }
    else if(r<=a[num].mid()){
        add(l,r,num<<1,x);
    }
    else {
        add(l,a[num].mid(),num<<1,x);
        add(a[num].mid()+1,r,(num<<1)|1,x);
    }
    a[num].mi=min(a[num<<1].mi,a[(num<<1)|1].mi);
    a[num].g=a[num<<1].g+a[(num<<1)|1].g;
    //cout<<‘a‘<<a[num].l<<‘ ‘<<a[num].r<<‘ ‘<<a[num].g<<endl;
}
int main(){
    fio;
    int n,m;
    string op;
    int x,y;
    while(cin>>n>>m){
        for(int i=1;i<=n;i++){
            cin>>b[i];
        }
        build(1,n,1);
        while(m--){
            cin>>op>>x>>y;
            if(op[0]==a){
                add(x,y,1,1);
            }
            else if(op[0]==q){

                add(x,y,1,0);
                cout<<Find(x,y,1)<<endl;
            }
        }
    }
}

 













以上是关于HDU 6351 Naive Operations(线段树)的主要内容,如果未能解决你的问题,请参考以下文章

[Hdu6315]Naive Operations

HDU6315 Naive Operations(多校第二场1007)(线段树)

[HDU6315]Naive Operations(线段树+树状数组)

HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树

HDU6315 Naive Operations(线段树 复杂度分析)

Naive Operations HDU6315 (杭电多校2G)