r语言中如何进行两组独立样本秩和检验
Posted tecdat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了r语言中如何进行两组独立样本秩和检验相关的知识,希望对你有一定的参考价值。
安装所需的包
wants <- c("coin")
has <- wants %in% rownames(installed.packages())
if(any(!has)) install.packages(wants[!has])>
一个样本
测试
set.seed(123)
medH0 <- 30
DV <- sample(0:100, 20, replace=TRUE)
DV <- DV[DV != medH0]
N <- length(DV)
(obs <- sum(DV > medH0))
[1] 15
(pGreater <- 1-pbinom(obs-1, N, 0.5))
[1] 0.02069
(pTwoSided <- 2 * pGreater)
[1] 0.04139
威尔科克森排检验
IQ <- c(99, 131, 118, 112, 128, 136, 120, 107, 134, 122)
medH0 <- 110
wilcox.test(IQ, alternative="greater", mu=medH0, conf.int=TRUE)
-
-
Wilcoxon signed rank test
-
-
data: IQ
-
V = 48, p-value = 0.01855
-
alternative hypothesis: true location is greater than 110
-
95 percent confidence interval:
-
113.5 Inf
-
sample estimates:
-
(pseudo)median
-
121
两个独立样本
测试
Nj <- c(20, 30)
DVa <- rnorm(Nj[1], mean= 95, sd=15)
DVb <- rnorm(Nj[2], mean=100, sd=15)
wIndDf <- data.frame(DV=c(DVa, DVb),
IV=factor(rep(1:2, Nj), labels=LETTERS[1:2]))
查看每组中低于或高于组合数据中位数的个案数。
library(coin)
median_test(DV ~ IV, distribution="exact", data=wIndDf)
-
-
Exact Median Test
-
-
data: DV by IV (A, B)
-
Z = 1.143, p-value = 0.3868
-
alternative hypothesis: true mu is not equal to 0
Wilcoxon秩和检验(曼 - 惠特尼检疫)
wilcox.test(DV ~ IV, alternative="less", conf.int=TRUE, data=wIndDf)
-
-
Wilcoxon rank sum test
-
-
data: DV by IV
-
W = 202, p-value = 0.02647
-
alternative hypothesis: true location shift is less than 0
-
95 percent confidence interval:
-
-Inf -1.771
-
sample estimates:
-
difference in location
-
-9.761
-
library(coin)
-
wilcox_test(DV ~ IV, alternative="less", conf.int=TRUE,
-
distribution="exact", data=wIndDf)
-
-
Exact Wilcoxon Mann-Whitney Rank Sum Test
-
-
data: DV by IV (A, B)
-
Z = -1.941, p-value = 0.02647
-
alternative hypothesis: true mu is less than 0
-
95 percent confidence interval:
-
-Inf -1.771
-
sample estimates:
-
difference in location
-
-9.761
两个依赖样本
测试
N <- 20
DVpre <- rnorm(N, mean= 95, sd=15)
DVpost <- rnorm(N, mean=100, sd=15)
wDepDf <- data.frame(id=factor(rep(1:N, times=2)),
DV=c(DVpre, DVpost),
IV=factor(rep(0:1, each=N), labels=c("pre", "post")))
medH0 <- 0
DVdiff <- aggregate(DV ~ id, FUN=diff, data=wDepDf)
(obs <- sum(DVdiff$DV < medH0))
[1] 7
(pLess <- pbinom(obs, N, 0.5))
[1] 0.1316
排名威尔科克森检验
wilcoxsign_test(DV ~ IV | id, alternative="greater",
distribution="exact", data=wDepDf)
-
-
Exact Wilcoxon-Signed-Rank Test
-
-
data: y by x (neg, pos)
-
stratified by block
-
Z = 2.128, p-value = 0.01638
-
alternative hypothesis: true mu is greater than 0
分离(自动)加载的包
try(detach(package:coin))
try(detach(package:modeltools))
try(detach(package:survival))
try(detach(package:mvtnorm))
try(detach(package:splines))
try(detach(package:stats4))
以上是关于r语言中如何进行两组独立样本秩和检验的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用wilcox.test函数进行两组数据的Wilcoxon秩和检验(Mann–Whitney U检验)评估两组数据是否来自相同的概率分布