POJ 3186 Treats for the Cows(区间dp)
Posted yinbiao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3186 Treats for the Cows(区间dp)相关的知识,希望对你有一定的参考价值。
传送门:
http://poj.org/problem?id=3186
Treats for the Cows
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7672 | Accepted: 4059 |
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
5 1 3 1 5 2
Sample Output
43
Hint
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Source
分析:
题意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最大和
思路:由里向外逆推区间
dp[i][j]表示左边取了i个数,右边取了j个数
故dp[i][j] = max(dp[i-1][j] + a[i]* (i+j), dp[i][j-1] + a[n-j+1]*(i+j));
注意当ij为0的边界判断即可。
故dp[i][j] = max(dp[i-1][j] + a[i]* (i+j), dp[i][j-1] + a[n-j+1]*(i+j));
注意当ij为0的边界判断即可。
code:
#include<stdio.h> #include<string.h> #include<memory> using namespace std; #define max_v 2005 int a[max_v]; int dp[max_v][max_v]; int main() { /* dp[i][j]表示左边取了i个数,右边取了j个数 故 dp[i][j] = max(dp[i-1][j] + a[i]* (i+j), dp[i][j-1] + a[n-j+1]*(i+j)); 注意当ij为0的边界判断即可。 */ int n; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } memset(dp,0,sizeof(dp)); int ans=0; for(int i=0;i<=n;i++) { for(int j=0;j+i<=n;j++) { if(i==0&&j==0) dp[i][j]=0; else if(i==0) dp[i][j]=dp[i][j-1]+a[n-j+1]*j; else if(j==0) dp[i][j]=dp[i-1][j]+a[i]*i; else dp[i][j]=max(dp[i-1][j]+a[i]*(i+j),dp[i][j-1]+a[n-j+1]*(i+j)); } ans=max(ans,dp[i][n-i]); } printf("%d ",ans); } return 0; }
以上是关于POJ 3186 Treats for the Cows(区间dp)的主要内容,如果未能解决你的问题,请参考以下文章
POJ3186 Treats for the Cows —— 区间DP
POJ 3186 Treats for the Cows (简单区间DP)
POJ 3186Treats for the Cows (区间DP)
POJ 3186Treats for the Cows(区间DP)