七个生产案例告诉你BATJ为何选择ElasticSearch!应用场景和优势!
Posted bguan568
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了七个生产案例告诉你BATJ为何选择ElasticSearch!应用场景和优势!相关的知识,希望对你有一定的参考价值。
从今天开始,想和你一起死磕ElasticSearch,学习分布式搜索引擎,跟着胖滚猪就对了!
既然是ES的第一课,那么最重要的是让你爱上它!不想说那些单纯的优势、概念了,直接上大厂的生产案例,才是最能吸引你的!跟着大厂走,没问题的!
为啥选择ES?
一个技术服务组件,首先需要了解全面它的使用场景,才能更针对性的去研究及推广。因此第一要务是搞懂为什么要学习ElasticSearch,开头po先一张排行图,大哥的地位可不是瞎搞来的,没点实力能上位?凭这排名就是你要学习它的理由!
凭啥排这么前呢?不就是个搜索引擎吗。额,也许提到Elasticseach,你第一反应就是"搜索引擎"。类似百度搜索、淘宝搜索那种。而我写这篇文章就是为了纠正你这个"错误"的观点。
Elasticseach 确实是做搜索引擎出家的,但是到现在已经进化成了一个全能型的数据产品。因此你的思维决不能限制在搜索引擎上。
本文通过一线大厂的八个案例,全方位让你了解ElasticSearch的应用场景和优势,包括:
-
日志实时分析
-
搜索服务
-
数据分析
-
数据监控
-
查询服务
-
后端存储
ElasticSearch在腾讯的应用
ElasticSearch在腾讯的应用非常广泛,主要有三:日志实时分析场景、搜索服务、时序数据分析。
-
搜索服务: 例如像腾讯文档基于 ES 做全文检索,电商客户拼多多、蘑菇街等大量的商品搜索都是基于 ES。
-
日志分析: 这个是 ES 应用最广泛的领域,支持全栈的日志分析,包括各种应用日志、数据库日志、用户行为日志、网络数据、安全数据等等。ES 拥有一套完整的日志解决方案,可以秒级实现从采集到展示。
-
时序分析: 典型的场景是监控数据分析,比如云监控,整个腾讯云的监控都是基于 ES 的。此外还包括物联网场景,也有大量的时序数据。时序数据的特点是写入吞吐量特别高,ES 支持的同时也提供了丰富的多维统计分析算子。
日志实时分析
典型日志如下:
-
运营日志,比如慢日志、异常日志,用来定位业务问题;
-
业务日志,比如用户的点击、访问日志,可以用来分析用户行为;
-
审计日志,可以用于安全分析。ES 很完美的解决了日志实时分析的需求,它具有如下特点:
Elastic 生态提供了完整的日志解决方案,任何一个开发、运维同学使用成熟组件,通过简单部署,即可搭建起一个完整的日志实时分析服务。
-
在 Elastic 生态中,日志从产生到可访问一般在 10s 级。相比于传统大数据解决方案的几十分钟、小时级,时效性非常高。ES 拥有一套完整的日志解决方案(ELK),可以秒级实现从采集到展示。
-
由于支持倒排索引、列存储等数据结构,ES 提供非常灵活的搜索分析能力。
-
支持交互式分析,即使在万亿级日志的情况下,ES 搜索响应时间也是秒级。
日志是互联网行业最基础、最广泛的数据形式,ES 非常完美的解决了日志实时分析场景,这也是近几年 ES 快速发展的一个重要原因
搜索服务
搜索服务,典型场景包含:商品搜索,类似京东、淘宝、拼多多中的商品搜索;APP 搜索,支持应用商店里的应用搜索;站内搜索,支持论坛、在线文档等搜索功能。我们支持了大量搜索服务,它们主要有以下特点:
-
高性能:单个服务最大达到 10w+ QPS,平响 20ms~,P95 延时小于 100ms。
-
强相关:搜索体验主要取决于搜索结果是否高度匹配用户意图,需要通过正确率、召回率等指标进行评估。
-
高可用:搜索场景通常要求高可用性,支持单机房故障容灾。任何一个电商服务,如淘宝、京东、拼多多,只要故障一个小时就可以上头条。
时序数据分析
时序数据分析,典型的时序数据包含:Metrics,即传统的服务器监控;整个腾讯云的监控都是基于 ES 的。APM,应用性能监控;物联网数据,智能硬件、工业物联网等产生的传感器数据。时序数据的特点是写入吞吐量特别高,ES 支持的同时也提供了丰富的多维统计分析算子。这类场景具有以下特点:
-
高并发写入:线上单集群最大规模达到 600+节点、1000w/s 的写入吞吐。
-
高查询性能:要求单条曲线 或者单个时间线的查询延时在 10ms~。
-
多维分析:要求灵活、多维度的统计分析能力,比如我们在查看监控的时候,可以按照地域、业务模块等灵活的进行统计分析。
上面通过腾讯的案例我们了解了三大应用场景,
-
日志实时分析场景
-
搜索服务
-
时序数据分析
另外从这三大应用场景我们也可以归纳出ES的几大优势:
1、具有高可用性、高扩展性;
2、查询速度快,性能佳;
3、搜索功能强大,高度匹配用户意图。
因此,可以看出,ES在日志实时分析和搜索方面的应用优势简直是无敌的!起码目前,在这两方面,还没有强劲的对手!
ElasticSearch在京东的应用
通过京东的案例,聊一聊ES在查询、检索、数据分析方面的应用场景
由于较高的性能和较低的使用门槛,京东内部有很多的场景都在使用 Elasticsearch。覆盖了京东多条业务线,同时也覆盖了很多应用场景:
补充关系型数据库的结构化数据查询
主要应用的业务是商品、促销、优惠券、订单、收银台、物流、对账、评论等大数据量查询。此场景的核心诉求是高性能、稳定性和高可用性,部分场景会有检索要求,通常用于加速关系型数据库,业务系统通过 binlog 同步或业务双写完成数据同步。
全文检索功能
主要的应用场景是应用、安全、风控、交易等操作日志,以及京东部分品类商品搜索。此类日志化场景对写要求很高,查询性能及高可用等要求相对较低,大的业务写会达到数千万 / 秒,存储以 PB 为单位来计算。
这些场景对磁盘、内存有比较高的要求,因此,京东也做了相应优化,用于减少内存消耗,提升磁盘整体使用率,使用更廉价的磁盘来降低成本等等。
实时数据分析引擎,形成统计报表
主要应用的业务是物流单的各种分析、订单数据分析、用户画像等。因为业务数据分析纬度较多,flink、storm 等流式分析对于某些报表场景不太适用,批处理实时性又成为问题,所以近实时分析的 Elasticsearch 就成为了这些业务的选择。
从京东的案例中,我们似乎看到了,可以利用ES在某些场景下代替关系型数据库哦!不仅如此,ES在实时数据分析领域,居然也有一席之地!
ElasticSearch在去哪儿的应用
通过去哪儿的案例,聊一聊ES在查询方面的应用场景,可以简单的理解为"代替"mysql。注意代替加了引号,闭着眼睛想都不可能完全代替。比如事务性。
15年去哪儿网酒店日均订单量达到30w+,随着多平台订单的聚合日均订单能达到100w左右。
原来采用的热表分库方式,即将最近6个月的订单的放置在一张表中,将历史订单放在在history表中。history表存储全量的数据,当用户查询的下单时间跨度超过6个月即查询历史订单表,此分表方式热表的数据量为4000w左右,当时能解决的问题。但是显然不能满足携程艺龙订单接入的需求。
如果继续按照热表方式,数据量将超过1亿条。全量数据表保存2年的可能就超过4亿的数据量。所以寻找有效途径解决此问题迫在眉睫。由于对这预计4亿的数据量还需按照预定日期、入住日期、离店日期、订单号、联系人姓名、电话、酒店名称、订单状态……等多个条件查询。所以简单按照某一个维度进行分表操作没有意义。
显然只通过DB来支撑大量的查询是不可取的,同时对于一些复杂的查询,Mysql支持得不够友好,所以Elasticsearch分布式搜索储存集群的引入,就是为了解决订单数据的存储与搜索的问题。
对订单模型进行抽象和分类,将常用搜索字段和基础属性字段剥离。DB做分库分表,存储订单详情;Elasticsearch存储搜素字段。
订单复杂查询直接走Elasticsearch,基于OrderNo的简单查询走DB,如下图所示。
从去哪儿的案例中,我们似乎看到了,关系型数据库撑不起的复杂查询,ES可以胜任。
总结
什么时候应该用ElasticSearch?
1、典型搜索场景:闭着眼用它!
2、典型日志分析场景:闭着眼用它!
3、关系型数据库查询有瓶颈:考虑下用它!为啥是考虑?ES的优点在于查询,然而实践证明,在被作为数据库来使用,即写完马上查询会有延迟。
4、数据分析场景:考虑下用它!为啥是考虑?简单通用的场景需求可以大规模使用,但在特定业务场景领域,还是要选择更加专业的数据产品,如复杂聚合,ClickHouse相比 Elasticserach 做亿级别数据深度聚合需求会更加合适。
ElasticSearch有什么优势呢?
1、很简便的横向扩容,分布式的架构,可以轻松地对资源进行横向纵向扩缩容,可以满足不同数据量级及查询场景对硬件资源的需求。能由数百台到万台机器搭建满足PB级的快速搜索,也能搭建单机版服务小公司。
2、查询速度快:ES底层采用Lucene作为搜索引擎,并在此之上做了多重优化,保证了用户对数据查询数据的需求。可"代替"传统关系型数据库,也可用于复杂数据分析,海量数据的近实时处理等。
3、相关性高:ES内部提供了完善的评分机制,会根据分词出现的频次等信息对文档进行相关性排序,保证相关性越高的文档排序越靠前。另外还提供了包括模糊查询,前缀查询,通配符查询等在内的多种查询手段,帮助用户快速高效地进行检索。
4、功能点多但使用比较简便,开箱即用,性能优化比较简单
5、生态圈丰富,社区活跃,适配多种工具。如下图,处理日志和输出到Elasticsearch,您可以使用日志记录工具,如Logstash(www.elastic.co/products/logstash),搜索和可视化界面分析这些日志,你可以使用Kibana(www.elastic.co/产品/ kibana),即传说中的ELK技术栈。另外当前主流的大数据框架也几乎都支持ES,比如Flink和ES就是个完美搭档。
以上是关于七个生产案例告诉你BATJ为何选择ElasticSearch!应用场景和优势!的主要内容,如果未能解决你的问题,请参考以下文章
帮你提高80%面试成功率的最全BATJ大厂最详细面试总结!!!(附:全套面试题)
程序员告诉你七个 Python 必备的 GUI 库,这次一定要学会!
Python案例篇:七个Python高阶案例(晕题的不要轻易看)
Python案例篇:七个Python高阶案例(晕题的不要轻易看)