ML——keras
Posted cfancy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ML——keras相关的知识,希望对你有一定的参考价值。
keras官网:https://keras.io/api/models/
创建keras 模型有三种方法:Sequential model、Functional API、Model subclassing (初学者常用Sequential model)
There are three ways to create Keras models:
- The Sequential model, which is very straightforward (a simple list of layers), but is limited to single-input, single-output stacks of layers (as the name gives away).
- The Functional API, which is an easy-to-use, fully-featured API that supports arbitrary model architectures. For most people and most use cases, this is what you should be using. This is the Keras "industry strength" model.
- Model subclassing, where you implement everything from scratch on your own. Use this if you have complex, out-of-the-box research use cases.
后续补充。。。。。
以上是关于ML——keras的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现
Tensorflow+kerasKeras API三种搭建神经网络的方式及以mnist举例实现
Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量
Tensorflow+kerasKeras 用Class类封装的模型如何调试call子函数的模型内部变量
Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
Tensorflow+Keraskeras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例