时间复杂度和空间复杂度
Posted liudaya
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了时间复杂度和空间复杂度相关的知识,希望对你有一定的参考价值。
时间复杂度
算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况
时间复杂度是用来估计算法运行时间的一个式子(单位),一般来说,时间复杂度高的算法比复杂度低的算法慢
print(‘Hello world‘) # O(1) # O(1) print(‘Hello World‘) print(‘Hello Python‘) print(‘Hello Algorithm‘) for i in range(n): # O(n) print(‘Hello world‘) for i in range(n): # O(n^2) for j in range(n): print(‘Hello world‘) for i in range(n): # O(n^2) print(‘Hello World‘) for j in range(n): print(‘Hello World‘) for i in range(n): # O(n^2) for j in range(i): print(‘Hello World‘) for i in range(n): for j in range(n): for k in range(n): print(‘Hello World‘) # O(n^3)
几次循环就是n的几次方的时间复杂度
n = 64 while n > 1: print(n) n = n // 2
26 = 64,log264 = 6,所以循环减半的时间复杂度为O(log2n),即O(logn)
如果是循环减半的过程,时间复杂度为O(logn)或O(log2n)
常见的时间复杂度高低排序:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3)
空间复杂度
空间复杂度:用来评估算法内存占用大小的一个式子
a = ‘Python‘ # 空间复杂度为1 # 空间复杂度为1 a = ‘Python‘ b = ‘php‘ c = ‘Java‘ num = [1, 2, 3, 4, 5] # 空间复杂度为5 num = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]] # 空间复杂度为5*4 num = [[[1, 2], [1, 2]], [[1, 2], [1, 2]] , [[1, 2], [1, 2]]] # 空间复杂度为3*2*2
定义一个或多个变量,空间复杂度都是为1,列表的空间复杂度为列表的长度
以上是关于时间复杂度和空间复杂度的主要内容,如果未能解决你的问题,请参考以下文章