54.Spiral Matrix
Posted luo-c
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了54.Spiral Matrix相关的知识,希望对你有一定的参考价值。
给定一个二维数组,将数组中的元素按照螺旋顺序输出,顺时针螺旋。
Input:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
Output: [1,2,3,6,9,8,7,4,5]
思路:
使用迷宫遍历,设定寻路的方向,当碰壁了,就换到下一个方向,但是要将已经走过的点标记出来,使用 0 标记。
class Solution { public: vector<int> spiralOrder(vector<vector<int>>& matrix) { if (matrix.empty() || matrix[0].size() == 0) return {}; vector<int> res; int m = matrix.size(), n = matrix[0].size(), i = 0, j = 0, idx = 0; int c[4][2] = { {0,1},{1,0},{0,-1},{-1,0} }; for (int k = 0; k < m * n; k++) { res.push_back(matrix[i][j]); matrix[i][j] = 0; int x = i + c[idx][0]; int y = j + c[idx][1]; if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] == 0) { idx = (idx + 1) % 4; x = i + c[idx][0]; y = j + c[idx][1]; } i = x; j = y; } return res; } };
二、使用坐标顺序读取的方式,设定上下左右的坐标,每次读完就更新坐标。如:二维数组为 m*n的数组,则: up = 0, down = m-1, left = 0, right = n-1; 每次读完一个顺序,就将对应的 up +1 , right -1, down -1 ,left +1, 并随时判断是否满足条件: up <= down, left <= right 的要求。
class Solution { public: vector<int> spiralOrder(vector<vector<int>>& matrix) { if (matrix.empty() || matrix[0].size() == 0) return {}; vector<int> res; int m = matrix.size(), n = matrix[0].size(); int up = 0, down = m - 1, left = 0, right = n - 1; while (true) { for (int j = left; j <= right; j++) res.push_back(matrix[up][j]); if (++up > down) break; for (int j = up; j <= down; j++) res.push_back(matrix[j][right]); if (--right < left) break; for (int j = right; j >= left; j--) res.push_back(matrix[down][j]); if (--down < up) break; for (int j = down; j >= up; j--) res.push_back(matrix[j][left]); if (++left > right) break; } return res; } };
以上是关于54.Spiral Matrix的主要内容,如果未能解决你的问题,请参考以下文章