hadoop streaming编程小demo(python版)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop streaming编程小demo(python版)相关的知识,希望对你有一定的参考价值。
都到了年根底下了,业务线黄了,成了惨兮兮的茶几。不说了。
换到了新的业务线,搞大数据质量评估。自动化质检和监控平台是用django,MR也是通过python实现的。(后来发现有odc压缩问题,python不知道怎么解决,正在改成java版本)
这里展示一个python编写MR的例子吧。
抄一句话:Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer。
1、首先,先介绍一下背景,我们的数据是存放在hive里的。hive建表语句如下:
我们将会解析元数据,和HDFS上的数据进行merge,方便处理。这里的partition_key用的是year/month/day。
hive (gulfstream_ods)> desc g_order; OK col_name data_type comment order_id bigint 订单id driver_id bigint 司机id,司机抢单前该值为0 driver_phone string 司机电话 passenger_id bigint 乘客id passenger_phone string 乘客电话 car_id int 接驾车辆id area int 城市id district string 城市区号 type int 订单时效,0 实时 1预约 current_lng decimal(19,6) 乘客发单时的经度 current_lat decimal(19,6) 乘客发单时的纬度 starting_name string 起点名称 starting_lng decimal(19,6) 起点经度 starting_lat decimal(19,6) 起点纬度 dest_name string 终点名称 dest_lng decimal(19,6) 终点经度 dest_lat decimal(19,6) 终点纬度 driver_start_distance int 司机与出发地的路面距离,单位:米 start_dest_distance int 出发地与终点的路面距离,单位:米 departure_time string 出发时间(预约单的预约时间,实时单为发单时间) strive_time string 抢单成功时间 consult_time string 协商时间 arrive_time string 司机点击‘我已到达’的时间 setoncar_time string 上车时间(暂时不用) begin_charge_time string 司机点机‘开始计费’的时间 finish_time string 完成时间 year string month string day string # Partition Information # col_name data_type comment year string month string day string
2、我们解析元数据
这里是解析元数据的过程。之后我们把元数据序列化后存入文件desc.gulfstream_ods.g_order,我们将会将此配置文件连同MR脚本一起上传到hadoop集群。
import subprocess from subprocess import Popen def desc_table(db, table): process = Popen(‘hive -e "desc %s.%s"‘ % (db, table), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() is_column = True structure_list = list() column_list = list() for line in stdout.split(‘\n‘): value_list = list() if not line or len(line.split()) < 2: break if is_column: column_list = line.split() is_column = False continue else: value_list = line.split() structure_dict = dict(zip(column_list, value_list)) structure_list.append(structure_dict) return structure_list
3、下面是hadoop streaming执行脚本。
#!/bin/bash
source /etc/profile
source ~/.bash_profile
#hadoop目录
echo "HADOOP_HOME: "$HADOOP_HOME
HADOOP="$HADOOP_HOME/bin/hadoop"
DB=$1
TABLE=$2
YEAR=$3
MONTH=$4
DAY=$5
echo $DB--$TABLE--$YEAR--$MONTH--$DAY
if [ "$DB" = "gulfstream_ods" ]
then
DB_NAME="gulfstream"
else
DB_NAME=$DB
fi
TABLE_NAME=$TABLE
#输入路径
input_path="/user/xiaoju/data/bi/$DB_NAME/$TABLE_NAME/$YEAR/$MONTH/$DAY/*"
#标记文件后缀名
input_mark="_SUCCESS"
echo $input_path
#输出路径
output_path="/user/bigdata-t/QA/yangfan/$DB_NAME/$TABLE_NAME/$YEAR/$MONTH/$DAY"
output_mark="_SUCCESS"
echo $output_path
#性能约束参数
capacity_mapper=500
capacity_reducer=200
map_num=10
reducer_num=10
queue_name="root.dashujudidiyanjiuyuan-zhinengpingtaibu.datapolicy-develop"
#启动job name
job_name="DW_Monitor_${DB_NAME}_${TABLE_NAME}_${YEAR}${MONTH}${DAY}"
mapper="python mapper.py $DB $TABLE_NAME"
reducer="python reducer.py"
$HADOOP fs -rmr $output_path
$HADOOP jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.2.jar \
-jobconf mapred.job.name="$job_name" \
-jobconf mapred.job.queue.name=$queue_name \
-jobconf mapred.map.tasks=$map_num \
-jobconf mapred.reduce.tasks=$reducer_num \
-jobconf mapred.map.capacity=$capacity_mapper \
-jobconf mapred.reduce.capacity=$capacity_reducer \
-input $input_path \
-output $output_path \
-file ./mapper.py \
-file ./reducer.py \
-file ./utils.py \
-file ./"desc.${DB}.${TABLE_NAME}" \
-mapper "$mapper" \
-reducer "$reducer"
if [ $? -ne 0 ]; then
echo "$DB_NAME $TABLE_NAME $YEAR $MONTH $DAY run faild"
fi
$HADOOP fs -touchz "${output_path}/$output_mark"
rm -rf ./${DB_NAME}.${TABLE_NAME}.${YEAR}-${MONTH}-${DAY}
$HADOOP fs -get $output_path/part-00000 ./${DB_NAME}.${TABLE_NAME}.${YEAR}-${MONTH}-${DAY}
4、这里是Wordcount的进阶版本,第一个功能是分区域统计订单量,第二个功能是在一天中分时段统计订单量。
mapper脚本
# -*- coding:utf-8 -*- #!/usr/bin/env python import sys import json import pickle reload(sys) sys.setdefaultencoding(‘utf-8‘) # 将字段和元数据匹配, 返回迭代器 def read_from_input(file, separator, columns): for line in file: if line is None or line == ‘‘: continue data_list = mapper_input(line, separator) if not data_list: continue item = None # 最后3列, 年月日作为partitionkey, 无用 if len(data_list) == len(columns) - 3: item = dict(zip(columns, data_list)) elif len(data_list) == len(columns): item = dict(zip(columns, data_list)) if not item: continue yield item def index_columns(db, table): with open(‘desc.%s.%s‘ % (db, table), ‘r‘) as fr: structure_list = deserialize(fr.read()) return [column.get(‘col_name‘) for column in structure_list] # map入口 def main(separator, columns): items = read_from_input(sys.stdin, separator, columns) mapper_result = {} for item in items: mapper_plugin_1(item, mapper_result) mapper_plugin_2(item, mapper_result)
def mapper_plugin_1(item, mapper_result): # key在现实中可以是不同appkey, 是用来分发到不同的reducer上的, 相同的route用来分发到相同的reducer key = ‘route1‘ area = item.get(‘area‘) district = item.get(‘district‘) order_id = item.get(‘order_id‘) if not area or not district or not order_id: return mapper_output(key, {‘area‘: area, ‘district‘: district, ‘order_id‘: order_id, ‘count‘: 1}) def mapper_plugin_2(item, mapper_result): key = ‘route2‘ strive_time = item.get(‘strive_time‘) order_id = item.get(‘order_id‘) if not strive_time or not order_id: return try: day_hour = strive_time.split(‘:‘)[0] mapper_output(key, {‘order_id‘: order_id, ‘strive_time‘: strive_time, ‘count‘: 1, ‘day_hour‘: day_hour})except Exception, ex: pass def serialize(data, type=‘json‘): if type == ‘json‘: try: return json.dumps(data) except Exception, ex: return ‘‘ elif type == ‘pickle‘: try: return pickle.dumps(data) except Exception, ex: return ‘‘ else: return ‘‘ def deserialize(data, type=‘json‘): if type == ‘json‘: try: return json.loads(data) except Exception, ex: return [] elif type == ‘pickle‘: try: return pickle.loads(data) except Exception, ex: return [] else: return [] def mapper_input(line, separator=‘\t‘): try: return line.split(separator) except Exception, ex: return None def mapper_output(key, data, separator=‘\t‘): key = str(key) data = serialize(data) print ‘%s%s%s‘ % (key, separator, data) # print >> sys.stderr, ‘%s%s%s‘ % (key, separator, data) if __name__ == ‘__main__‘: db = sys.argv[1] table = sys.argv[2] columns = index_columns(db, table) main(‘||‘, columns)
reducer脚本
#!/usr/bin/env python # vim: set fileencoding=utf-8 import sys reload(sys) sys.setdefaultencoding(‘utf-8‘) import json import pickle from itertools import groupby from operator import itemgetter def read_from_mapper(file, separator): for line in file: yield reducer_input(line) def main(separator=‘\t‘): reducer_result = {} line_list = read_from_mapper(sys.stdin, separator) for route_key, group in groupby(line_list, itemgetter(0)): if route_key is None: continue reducer_result.setdefault(route_key, {}) if route_key == ‘route1‘: reducer_plugin_1(route_key, group, reducer_result) reducer_output(route_key, reducer_result[route_key]) if route_key == ‘route2‘: reducer_plugin_2(route_key, group, reducer_result) reducer_output(route_key, reducer_result[route_key])
def reducer_plugin_1(route_key, group, reducer_result): for _, data in group: if data is None or len(data) == 0: continue if not data.get(‘area‘) or not data.get(‘district‘) or not data.get(‘count‘): continue key = ‘_‘.join([data.get(‘area‘), data.get(‘district‘)]) reducer_result[route_key].setdefault(key, 0) reducer_result[route_key][key] += int(data.get(‘count‘)) # print >> sys.stderr, ‘%s‘ % json.dumps(reducer_result[route_key]) def reducer_plugin_2(route_key, group, reducer_result): for _, data in group: if data is None or len(data) == 0: continue if not data.get(‘order_id‘) or not data.get(‘strive_time‘) or not data.get(‘count‘) or not data.get(‘day_hour‘): continue key = data.get(‘day_hour‘) reducer_result[route_key].setdefault(key, {}) reducer_result[route_key][key].setdefault(‘count‘, 0) reducer_result[route_key][key].setdefault(‘order_list‘, []) reducer_result[route_key][key][‘count‘] += int(data.get(‘count‘)) if len(reducer_result[route_key][key][‘order_list‘]) < 100: reducer_result[route_key][key][‘order_list‘].append(data.get(‘order_id‘)) # print >> sys.stderr, ‘%s‘ % json.dumps(reducer_result[route_key])
def serialize(data, type=‘json‘): if type == ‘json‘: try: return json.dumps(data) except Exception, ex: return ‘‘ elif type == ‘pickle‘: try: return pickle.dumps(data) except Exception, ex: return ‘‘ else: return ‘‘ def deserialize(data, type=‘json‘): if type == ‘json‘: try: return json.loads(data) except Exception, ex: return [] elif type == ‘pickle‘: try: return pickle.loads(data) except Exception, ex: return [] else: return [] def reducer_input(data, separator=‘\t‘): data_list = data.strip().split(separator, 2) key = data_list[0] data = deserialize(data_list[1]) return [key, data] def reducer_output(key, data, separator=‘\t‘): key = str(key) data = serialize(data) print ‘%s\t%s‘ % (key, data) # print >> sys.stderr, ‘%s\t%s‘ % (key, data) if __name__ == ‘__main__‘: main()
5、上一个版本,遭遇了reduce慢的情况,原因有两个:一是因为route的设置,所有相同的route都将分发到同一个reducer,造成单个reducer处理压力大,性能下降。二是因为集群是搭建在虚拟机上的,性能本身就差。可以对这个问题进行改进。改进版本如下,方案是在mapper阶段先对数据进行初步的统计,缓解reducer的计算压力。
mapper脚本
# -*- coding:utf-8 -*- #!/usr/bin/env python import sys import json import pickle reload(sys) sys.setdefaultencoding(‘utf-8‘) # 将字段和元数据匹配, 返回迭代器 def read_from_input(file, separator, columns): for line in file: if line is None or line == ‘‘: continue data_list = mapper_input(line, separator) if not data_list: continue item = None # 最后3列, 年月日作为partitionkey, 无用 if len(data_list) == len(columns) - 3: item = dict(zip(columns, data_list)) elif len(data_list) == len(columns): item = dict(zip(columns, data_list)) if not item: continue yield item def index_columns(db, table): with open(‘desc.%s.%s‘ % (db, table), ‘r‘) as fr: structure_list = deserialize(fr.read()) return [column.get(‘col_name‘) for column in structure_list] # map入口 def main(separator, columns): items = read_from_input(sys.stdin, separator, columns) mapper_result = {} for item in items: mapper_plugin_1(item, mapper_result) mapper_plugin_2(item, mapper_result) for route_key, route_value in mapper_result.iteritems(): for key, value in route_value.iteritems(): ret_dict = dict() ret_dict[‘route_key‘] = route_key ret_dict[‘key‘] = key ret_dict.update(value) mapper_output(‘route_total‘, ret_dict) def mapper_plugin_1(item, mapper_result): # key在现实中可以是不同appkey, 是用来分发到不同的reducer上的, 相同的route用来分发到相同的reducer key = ‘route1‘ area = item.get(‘area‘) district = item.get(‘district‘) order_id = item.get(‘order_id‘) if not area or not district or not order_id: returntry: # total统计 mapper_result.setdefault(key, {}) mapper_result[key].setdefault(‘_‘.join([area, district]), {}) mapper_result[key][‘_‘.join([area, district])].setdefault(‘count‘, 0) mapper_result[key][‘_‘.join([area, district])].setdefault(‘order_id‘, []) mapper_result[key][‘_‘.join([area, district])][‘count‘] += 1 if len(mapper_result[key][‘_‘.join([area, district])][‘order_id‘]) < 10: mapper_result[key][‘_‘.join([area, district])][‘order_id‘].append(order_id) except Exception, ex: pass def mapper_plugin_2(item, mapper_result): key = ‘route2‘ strive_time = item.get(‘strive_time‘) order_id = item.get(‘order_id‘) if not strive_time or not order_id: return try: day_hour = strive_time.split(‘:‘)[0]# total统计 mapper_result.setdefault(key, {}) mapper_result[key].setdefault(day_hour, {}) mapper_result[key][day_hour].setdefault(‘count‘, 0) mapper_result[key][day_hour].setdefault(‘order_id‘, []) mapper_result[key][day_hour][‘count‘] += 1 if len(mapper_result[key][day_hour][‘order_id‘]) < 10: mapper_result[key][day_hour][‘order_id‘].append(order_id) except Exception, ex: pass def serialize(data, type=‘json‘): if type == ‘json‘: try: return json.dumps(data) except Exception, ex: return ‘‘ elif type == ‘pickle‘: try: return pickle.dumps(data) except Exception, ex: return ‘‘ else: return ‘‘ def deserialize(data, type=‘json‘): if type == ‘json‘: try: return json.loads(data) except Exception, ex: return [] elif type == ‘pickle‘: try: return pickle.loads(data) except Exception, ex: return [] else: return [] def mapper_input(line, separator=‘\t‘): try: return line.split(separator) except Exception, ex: return None def mapper_output(key, data, separator=‘\t‘): key = str(key) data = serialize(data) print ‘%s%s%s‘ % (key, separator, data) # print >> sys.stderr, ‘%s%s%s‘ % (key, separator, data) if __name__ == ‘__main__‘: db = sys.argv[1] table = sys.argv[2] columns = index_columns(db, table) main(‘||‘, columns)
reducer脚本
#!/usr/bin/env python # vim: set fileencoding=utf-8 import sys reload(sys) sys.setdefaultencoding(‘utf-8‘) import json import pickle from itertools import groupby from operator import itemgetter def read_from_mapper(file, separator): for line in file: yield reducer_input(line) def main(separator=‘\t‘): reducer_result = {} line_list = read_from_mapper(sys.stdin, separator) for route_key, group in groupby(line_list, itemgetter(0)): if route_key is None: continue reducer_result.setdefault(route_key, {})if route_key == ‘route_total‘: reducer_total(route_key, group, reducer_result) reducer_output(route_key, reducer_result[route_key]) def reducer_total(route_key, group, reducer_result): for _, data in group: if data is None or len(data) == 0: continue if data.get(‘route_key‘) == ‘route1‘: reducer_result[route_key].setdefault(data.get(‘route_key‘), {}) reducer_result[route_key][data.get(‘key‘)].setdefault(‘count‘, 0) reducer_result[route_key][data.get(‘key‘)].setdefault(‘order_id‘, []) reducer_result[route_key][data.get(‘key‘)][‘count‘] += data.get(‘count‘) for order_id in data.get(‘order_id‘): if len(reducer_result[route_key][data.get(‘key‘)][‘order_id‘]) <= 10: reducer_result[route_key][data.get(‘key‘)][‘order_id‘].append(order_id) elif data.get(‘route_key‘) == ‘route2‘: reducer_result[route_key].setdefault(data.get(‘route_key‘), {}) reducer_result[route_key][data.get(‘key‘)].setdefault(‘count‘, 0) reducer_result[route_key][data.get(‘key‘)].setdefault(‘order_id‘, []) reducer_result[route_key][data.get(‘key‘)][‘count‘] += data.get(‘count‘) for order_id in data.get(‘order_id‘): if len(reducer_result[route_key][data.get(‘key‘)][‘order_id‘]) <= 10: reducer_result[route_key][data.get(‘key‘)][‘order_id‘].append(order_id) else: pass def serialize(data, type=‘json‘): if type == ‘json‘: try: return json.dumps(data) except Exception, ex: return ‘‘ elif type == ‘pickle‘: try: return pickle.dumps(data) except Exception, ex: return ‘‘ else: return ‘‘ def deserialize(data, type=‘json‘): if type == ‘json‘: try: return json.loads(data) except Exception, ex: return [] elif type == ‘pickle‘: try: return pickle.loads(data) except Exception, ex: return [] else: return [] def reducer_input(data, separator=‘\t‘): data_list = data.strip().split(separator, 2) key = data_list[0] data = deserialize(data_list[1]) return [key, data] def reducer_output(key, data, separator=‘\t‘): key = str(key) data = serialize(data) print ‘%s\t%s‘ % (key, data) # print >> sys.stderr, ‘%s\t%s‘ % (key, data) if __name__ == ‘__main__‘: main()
以上是关于hadoop streaming编程小demo(python版)的主要内容,如果未能解决你的问题,请参考以下文章
大数据Hadoop Streaming编程实战之C++PhpPython