[Luogu] CF888E Maximum Subsequence

Posted andysj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Luogu] CF888E Maximum Subsequence相关的知识,希望对你有一定的参考价值。

(Link)

Description

给一个长度为(n)的数列和(m),在数列任选若干个数,使得他们的和对(m)取模后最大。
(n ≤ 35, 1 ≤ m ≤ 10^9)

Solution

(n)这么小,一看就知道要爆搜。但纯搜索是(O(2^n))的,跑不过去。这时可以考虑(Meet in the Middle)

(Meet in Middle)的理解:

对于一个复杂度是(O(2^n))的搜索算法,我们把他拆成(O((2^{frac{n}{2}})^2))的做法,再想办法用一些诸如贪心之类的线性算法,将(O((2^{frac{n}{2}})^2))的复杂度降低为(O(2 imes2^{frac{n}{2}}))

对于本题来说也很好理解。我们先暴力枚举前一半的数能凑出的所有和(对(m)取模)。对于后一半,凑出一个和之后,肯定是贪心地选第一次凑出的和中,小于(m-sum)里最大的。具体可以用(lowerunderline{}bound)实现。

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long

int n, m, t, a[40];

ll res, num[300005];

int read()
{
	int x = 0, fl = 1; char ch = getchar();
	while (ch < ‘0‘ || ch > ‘9‘) { if (ch == ‘-‘) fl = -1; ch = getchar();}
	while (ch >= ‘0‘ && ch <= ‘9‘) {x = (x << 1) + (x << 3) + ch - ‘0‘; ch = getchar();}
	return x * fl;
}

void dfs1(int x, ll sum)
{
	if (x == n / 2 + 1)
	{
		num[ ++ t] = sum;
		return;
	}
	dfs1(x + 1, (sum + a[x]) % m);
	dfs1(x + 1, sum);
	return;
}

void dfs2(int x, ll sum)
{
	if (x == n + 1)
	{
		int pos = lower_bound(num + 1, num + t + 1, m - sum) - num;
		if (pos == t + 1) pos = t;
		else pos -- ;
		res = max(res, (sum + num[pos]) % m);
		return;
	}
	dfs2(x + 1, (sum + a[x]) % m);
	dfs2(x + 1, sum);
	return;
}

int main()
{
	n = read(); m = read();
	for (int i = 1; i <= n; i ++ )
		a[i] = read();
	dfs1(1, 0ll);
	sort(num + 1, num + t + 1);
	dfs2(n / 2 + 1, 0ll);
	printf("%lld
", res);
 	return 0;
}

以上是关于[Luogu] CF888E Maximum Subsequence的主要内容,如果未能解决你的问题,请参考以下文章

CF 888E Maximum Subsequence

CF888E Maximum Subsequence-折半搜索

CF888E Maximum Subsequence (折半枚举+ two-pointers)

Codeforces 888E:Maximum Subsequence(枚举,二分)

CF888EMaximum Subsequence 折半搜索

[CF1082D]Maximum Diameter Graph