#组合计数,容斥定理#U136346 数星星

Posted spare-no-effort

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了#组合计数,容斥定理#U136346 数星星相关的知识,希望对你有一定的参考价值。

题目

天上的繁星一闪一闪的,甚是好看。你和你的小伙伴们一起坐在草地上,欣赏这美丽的夜景。
我们假定天上有(n)颗星星,它们排成一排,从左往右以此编号为1到(n),但是天上的星星实在太多了,你和你的小伙伴
们只能看到其中的(k)个星星,所以需要你在这(n)颗星星中选出(k)颗来进行观测,但是你的小伙伴给你提出了一个要求,
(k)颗星星中,至少存在(r)颗星星是连续的,连续是指这些星星的编号连续。


分析

考虑答案可以容斥实现,也就是

[largesum_{i=1}^{lfloorfrac{k}{r} floor}(-1)^{i-1} imes C(n-k+1,i) imes C(n-ir,k-ir) ]

实质的过程就是在(n-k+1)个位置中选择(i)个位置插入长度至少为(r)的星星,

然后再将剩下的(k-ir)颗星星插入在其它位置


代码

#include <cstdio>
#define rr register
using namespace std;
const int mod=1000000007,N=10000011;
int n,m,G,inv[N],fac[N],ans;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;} 
signed main(){
	fac[0]=fac[1]=inv[0]=inv[1]=1,scanf("%d%d%d",&n,&m,&G);
	for (rr int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	for (rr int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
	for (rr int i=1;i<=m/G;++i)
	    ans=mo(ans,1ll*((i&1)?1:(mod-1))*C(n-m+1,i)%mod*C(n-i*G,m-i*G)%mod);
	return !printf("%d",ans);
}



以上是关于#组合计数,容斥定理#U136346 数星星的主要内容,如果未能解决你的问题,请参考以下文章

[Luogu4916]魔力环[Burnside引理组合计数容斥]

BZOJ2839集合计数 组合数+容斥

专题计数问题(排列组合,容斥原理,卡特兰数)

BZOJ 4455 [Zjoi2016]小星星 容斥计数

codeforces 439 E. Devu and Birthday Celebration 组合数学 容斥定理

组合数形式的容斥原理