扫地机器人市场:米家科沃斯激烈肉搏

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了扫地机器人市场:米家科沃斯激烈肉搏相关的知识,希望对你有一定的参考价值。

  • 题目描述
请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。

 

示例 1:

输入: "abcabcbb"
输出: 3 
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:

输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:

输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
     请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
  • 解法一:hash表+动态规划

首先可以用动态规划求解此题。设动态规划表dp,dp[j]是以s[j]为结尾的“最长不重复字符串”的长度。dp[j-1]是第j-1个“最长不重复字符串”的长度。假设s[j]上一次出现的字符位置为i,则s[i]和s[j]之间的距离d=j-1,此时,dp[j-1]存在两种情况:

1.d>dp[j-1],想想这个距离大于dp[j-1],那么说明s[i]不在以s[j-1]为结尾的“最长不重复字符串”里面,此时dp[j]=dp[j-1]+1

2.d<=dp[j-1],说明s[i]在在以s[j-1]为结尾的“最长不重复字符串”里面,此时dp[j] = j -i。

此外,可以用一个hash map保存s[j]出现的位置, 如果重复出现,则更新为最近的位置,hash map的时间复杂度为O(1)。

再梳理一下动态规划的转移方程:

技术图片

 

 此时返回时max的最长不重复字符串。

代码:

class Solution:
    ‘‘‘
    hash表+动态规划
    ‘‘‘
    def lengthOfLongestSubstring(self, s: str) -> int:
        dp = []
        res = tmp = 0
        dic = {}
        for j in range(len(s)):
            i = dic.get(s[j], -1)
            dic[s[j]] = j
            # tmp = tmp + 1 if tmp < j-i else j - i
            if j -i <= tmp:
                tmp = j -i
            elif j -i > tmp:
                tmp += 1
            res = max(res, tmp)
        return res
  • 解法二:hash表+双指针

这道题,其实最容易想到的就是时间复杂度为O(N^2)的双指针。类似滑动窗口的思想,用指针p1和p2指向字符串头,用一个滑动窗口始终维护当前不重复的最大长度的字符串s[p1:p2+1],当s[p2]不在这个字符串中,则从左向右移动p2,否则,从左向右移动p1,同时每次保存最大s[p1:p2+1]的长度,保存每次更新的最大值。

但是呢,这样时间复杂度高啊,p1和p2最差的情况需要O(N^2)。

class Solution:
    ‘‘‘
    滑动窗口+双指针
    ‘‘‘
    def lengthOfLongestSubstring(self, s: str) -> int:
        p1, p2= 0,0
        res = 0
        while p1 < len(s) and p2 < len(s):
            if s[p2] not in s[p1:p2]:
                res = max(res, p2+1 - p1)
                p2 += 1
            else:
                p1 += 1
        return res

因此如果我们在p2遇到重复的s[p2]时,直接将s[p1]指向前一个s[p2]出现的位置,(为什么要这么做呢?因此p1原来的位置到前一个s[p2]出现的位置这段位置已经包含了重复的s[p2],因此遍历这部分是没有意义的,最大字符串一定是在没有重复的)。这样的话,我们可以用一个hash表保存s[p2]的位置,如果下一次遇到s[p2]时,则将p1的指向s[p2]出现的前一个位置。

最大字符串长度则为每次的p2-p1的最大值。

此时时间复杂度O(N),空间复杂度O(N).

 

代码中i表示p1,j表示p2.

class Solution:
    ‘‘‘
    hash表+双指针
    ‘‘‘
    def lengthOfLongestSubstring(self, s: str) -> int:
        res, i , Map =0, -1, {}
        for j in range(len(s)):
            if s[j] in Map:
                i = max(Map[s[j]], i) #求i的新位置
            Map[s[j]] = j #哈希表记录s[j]的索引j
            res = max(res, j - i)
        return res

参考:https://leetcode-cn.com/problems/zui-chang-bu-han-zhong-fu-zi-fu-de-zi-zi-fu-chuan-lcof/solution/c-san-chong-jie-fa-by-yizhe-shi-2/

以上是关于扫地机器人市场:米家科沃斯激烈肉搏的主要内容,如果未能解决你的问题,请参考以下文章

扫地机器人会否抛弃激光雷达这位原配?

科沃斯扫地机器df45被卡住了

科沃斯何以成为家用服务机器人行业技术天花板?

扫地机芯片是多少纳米的

扫地机器人能有多硬核?好家伙自动驾驶激光扫描NLP这些硬科技全上了,科沃斯:技术创新才能打破行业内卷...

清洁对话带娃,扫地机摆脱“人工智障”标签