比较Adam 和Adamw
Posted tfknight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了比较Adam 和Adamw相关的知识,希望对你有一定的参考价值。
引用自: https://www.lizenghai.com/archives/64931.html
AdamW
AdamW是在Adam+L2正则化的基础上进行改进的算法。
使用Adam优化带L2正则的损失并不有效。如果引入L2正则项,在计算梯度的时候会加上对正则项求梯度的结果。
那么如果本身比较大的一些权重对应的梯度也会比较大,由于Adam计算步骤中减去项会有除以梯度平方的累积,使得减去项偏小。按常理说,越大的权重应该惩罚越大,但是在Adam并不是这样。
而权重衰减对所有的权重都是采用相同的系数进行更新,越大的权重显然惩罚越大。
在常见的深度学习库中只提供了L2正则,并没有提供权重衰减的实现。
Adam+L2 VS AdamW
图片中红色是传统的Adam+L2 regularization的方式,绿色是Adam+weightdecay的方式。可以看出两个方法的区别仅在于“系数乘以上一步参数值“这一项的位置。
再结合代码来看一下AdamW的具体实现。
以下代码来自https://github.com/macanv/BERT-BiLSTM-CRF-NER/blob/master/bert_base/bert/optimization.py中的AdamWeightDecayOptimizer中的apply_gradients函数中,BERT中的优化器就是使用这个方法。
在代码中也做了一些注释用于对应之前给出的Adam简化版公式,方便理解。可以看出update += self.weight_decay_rate * param这一句是Adam中没有的,也就是Adam中绿色的部分对应的代码,weightdecay这一步是是发生在Adam中需要被更新的参数update计算之后,并且在乘以学习率learning_rate之前,这和图片中的伪代码的计算顺序是完全一致的。总之一句话,如果使用了weightdecay就不必再使用L2正则化了。
# m = beta1*m + (1-beta1)*dx
next_m = (tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
# v = beta2*v + (1-beta2)*(dx**2)
next_v = (tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad)))
# m / (np.sqrt(v) + eps)
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn‘t interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += self.weight_decay_rate * param
update_with_lr = self.learning_rate * update
# x += - learning_rate * m / (np.sqrt(v) + eps)
next_param = param - update_with_lr
原有的英文注释中也解释了Adam和传统Adam+L2正则化的差异,好了到这里应该能理解Adam了,并且也能理解AdamW在Adam上的改进了。
以上是关于比较Adam 和Adamw的主要内容,如果未能解决你的问题,请参考以下文章
Pytorch自定义优化器Optimizer简单总结(附AdamW代码分析)