1020 Tree Traversals (25分)
Posted tomori
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1020 Tree Traversals (25分)相关的知识,希望对你有一定的参考价值。
题干
Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and inorder traversal sequences, you are supposed to output the level order traversal sequence of the corresponding binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the postorder sequence and the third line gives the inorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding binary tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
Sample Output:
4 1 6 3 5 7 2
解释
意思就是给你一个二叉树的后序遍历和中序遍历结果,让你求它的层序遍历结果
思路
用所给的两个序列把树还原出来,然后bfs,就好了。
问题的关键在于怎么还原这个树,通过查看后序遍历来得到根,然后通过根在中序遍历中的位置,得到这个根的左子树部分和右子树部分,问题是递归的,所以用dfs做。
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
const int N = 100;
int a[N];
int n;
int lc[N], rc[N];
int in[N], post[N];
vector<int> ans;
int dfs(int i, int j, int l, int r){// 后序遍历序列中的l~r,对应中序遍历中的i~j这一批结点
if(i > j) return 0;
int x = post[j], idx = a[x];
int d = idx - l;
lc[x] = dfs(i, i + d - 1, l, idx - 1);
rc[x] = dfs(i + d, j - 1, idx + 1, r - 1);
return x;
}
void bfs(int x){
queue<int> q;
q.push(x);
while(q.size()){
int t = q.front();
q.pop();
ans.push_back(t);
if(lc[t]) q.push(lc[t]);
if(rc[t]) q.push(rc[t]);
}
}
int main(){
cin >> n;
for(int i = 0; i < n; i ++) cin >> post[i];
for(int i = 0; i < n; i ++) cin >> in[i], a[in[i]] = i;
int x = dfs(0, n - 1, 0, n - 1);
bfs(x);
for(int i = 0; i < n; i ++) cout << ans[i] << (i == n - 1 ? "" : " ");
return 0;
}
还有这题有个谜之测试点是什么鬼啊。。。不是说N <= 30吗
以上是关于1020 Tree Traversals (25分)的主要内容,如果未能解决你的问题,请参考以下文章
PAT Advanced 1020 Tree Traversals (25分)