Keras调用LSTM之函数接口介绍

Posted gczr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Keras调用LSTM之函数接口介绍相关的知识,希望对你有一定的参考价值。

一、LSTM函数介绍

keras.layers.LSTM(units, activation=tanh, recurrent_activation=hard_sigmoid, use_bias=True, kernel_initializer=glorot_uniform, recurrent_initializer=orthogonal, bias_initializer=zeros, unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)

参数

  • units: 正整数,也叫隐藏层,表示的是每个lstm单元里面前馈神经网络的输出维度,每一个门的计算都有一个前馈网络层
  • activation: 要使用的激活函数 ,如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
  • recurrent_activation: 用于循环时间步的激活函数 。默认分段线性近似 sigmoid (hard_sigmoid)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializerkernel 权值矩阵的初始化器, 用于输入的线性转换。
  • recurrent_initializerrecurrent_kernel 权值矩阵 的初始化器,用于循环层状态的线性转换 。
  • bias_initializer:偏置向量的初始化器 .
  • unit_forget_bias: 布尔值。 如果为 True,初始化时,将忘记门的偏置加 1。 将其设置为 True 同时还会强制 bias_initializer="zeros"。 这个建议来自 。
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数。
  • recurrent_regularizer: 运用到 recurrent_kernel 权值矩阵的正则化函数 。
  • bias_regularizer: 运用到偏置向量的正则化函数 。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数。
  • recurrent_constraint: 运用到 recurrent_kernel 权值矩阵的约束函数。
  • bias_constraint: 运用到偏置向量的约束函数。
  • dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换。
  • recurrent_dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于循环层状态的线性转换。
  • implementation: 实现模式,1 或 2。 模式 1 将把它的操作结构化为更多的小的点积和加法操作, 而模式 2 将把它们分批到更少,更大的操作中。 这些模式在不同的硬件和不同的应用中具有不同的性能配置文件。
  • return_sequences: 布尔值。是返回输出序列中的最后一个输出,还是全部序列,True的话返回全部序列,False返回最后一个输出,默认为False
  • return_state: 布尔值。除了输出之外是否返回最后一个状态。
  • go_backwards: 布尔值 (默认 False)。 如果为 True,则向后处理输入序列并返回相反的序列。
  • stateful: 布尔值 (默认 False)。 如果为 True,则本批次中索引 i 处的每个样品的最后状态,将用作下一批次中索引 i 样品的初始状态
  • unroll: 布尔值 (默认 False)。 如果为 True,则网络将展开,否则将使用符号循环。 展开可以加速 RNN,但它往往会占用更多的内存。 展开只适用于短序列。

以上是关于Keras调用LSTM之函数接口介绍的主要内容,如果未能解决你的问题,请参考以下文章

如何为 LSTM 实现 Keras 自定义损失函数

python tensorflow 2.0 不使用 Keras 搭建简单的 LSTM 网络

教你搭建多变量时间序列预测模型LSTM(附代码数据集)

keras中双向LSTM流程的验证

如何在keras中堆叠多个lstm?

Keras 中的 LSTM 实现是如何工作的