BlockManager源码详解

Posted liufei-yes

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BlockManager源码详解相关的知识,希望对你有一定的参考价值。

一、简介

?????在每个节点(driver和executor)上运行的管理器,该接口提供用于在本地和远程将block放置和检索到各种存储(内存,磁盘和堆外)的接口。

二、源码

private[spark] class BlockManager(
    executorId: String,
    rpcEnv: RpcEnv,
    val master: BlockManagerMaster,
    serializerManager: SerializerManager,
    val conf: SparkConf,
    memoryManager: MemoryManager,
    mapOutputTracker: MapOutputTracker,
    shuffleManager: ShuffleManager,
    val blockTransferService: BlockTransferService,
    securityManager: SecurityManager,
    numUsableCores: Int)
  extends BlockDataManager with BlockEvictionHandler with Logging {

  // 是否配置spark是否启用shuffle,提高性能
  private[spark] val externalShuffleServiceEnabled =
    conf.getBoolean("spark.shuffle.service.enabled", false)

  val diskBlockManager = {
    // 只有driver或者不开启shuffler的executor
    val deleteFilesOnStop =
      !externalShuffleServiceEnabled || executorId == SparkContext.DRIVER_IDENTIFIER
    new DiskBlockManager(conf, deleteFilesOnStop)
  }

  // Visible for testing
  private[storage] val blockInfoManager = new BlockInfoManager

  private val futureExecutionContext = ExecutionContext.fromExecutorService(
    ThreadUtils.newDaemonCachedThreadPool("block-manager-future", 128))

  // 数据块实际存储的位置 memoryStore和diskStore
  private[spark] val memoryStore =
    new MemoryStore(conf, blockInfoManager, serializerManager, memoryManager, this)
  private[spark] val diskStore = new DiskStore(conf, diskBlockManager)
  memoryManager.setMemoryStore(memoryStore)

  // 根据内存管理,maxMemory这个值很容易就达到
  private val maxMemory = memoryManager.maxOnHeapStorageMemory

  // shuffle程序使用的端口,如果使用的是yarn,可以通过hadoop配置来设置
  private val externalShuffleServicePort = {
    val tmpPort = Utils.getSparkOrYarnConfig(conf, "spark.shuffle.service.port", "7337").toInt
    if (tmpPort == 0) {
      // for testing, we set "spark.shuffle.service.port" to 0 in the yarn config, so yarn finds
      // an open port.  But we still need to tell our spark apps the right port to use.  So
      // only if the yarn config has the port set to 0, we prefer the value in the spark config
      conf.get("spark.shuffle.service.port").toInt
    } else {
      tmpPort
    }
  }

  var blockManagerId: BlockManagerId = _

  // 进行shuffle的服务器地址
  private[spark] var shuffleServerId: BlockManagerId = _

  // 读取其他executor的shuffle文件,这是一个外部服务,或者是标准的BlockTransferService服务去连接其他executor
  private[spark] val shuffleClient = if (externalShuffleServiceEnabled) {
    val transConf = SparkTransportConf.fromSparkConf(conf, "shuffle", numUsableCores)
    new ExternalShuffleClient(transConf, securityManager, securityManager.isAuthenticationEnabled(),
      securityManager.isSaslEncryptionEnabled())
  } else {
    blockTransferService
  }

  // block manager 刷新从driver获得的block信息失败的最大次数
  private val maxFailuresBeforeLocationRefresh =
    conf.getInt("spark.block.failures.beforeLocationRefresh", 5)

  private val slaveEndpoint = rpcEnv.setupEndpoint(
    "BlockManagerEndpoint" + BlockManager.ID_GENERATOR.next,
    new BlockManagerSlaveEndpoint(rpcEnv, this, mapOutputTracker))

  // 等待的任务将会异步执行
  // 使用asyncReregisterLock这个锁实现同步
  private var asyncReregisterTask: Future[Unit] = null
  private val asyncReregisterLock = new Object

  // Field related to peer block managers that are necessary for block replication
  @volatile private var cachedPeers: Seq[BlockManagerId] = _
  private val peerFetchLock = new Object
  private var lastPeerFetchTime = 0L

  /**
   * 使用给定的APPID初始化blockmanager。这个操作不会在构造函数中执行,因为
   * AppId在实例化的时候可能还未知(特别是driver,只有在TaskScheduler注册之后才知道)
   * 这个方法将会初始化BlockTransferService和ShuffleClient,并向BlockManagerMaster注册,启动BlockManagerWorker,如果有配置shuffle,并向shuffle注册
   */
  def initialize(appId: String): Unit = {
    blockTransferService.init(this)
    shuffleClient.init(appId)

    blockManagerId = BlockManagerId(
      executorId, blockTransferService.hostName, blockTransferService.port)

    shuffleServerId = if (externalShuffleServiceEnabled) {
      logInfo(s"external shuffle service port = $externalShuffleServicePort")
      BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
    } else {
      blockManagerId
    }

    master.registerBlockManager(blockManagerId, maxMemory, slaveEndpoint)

    // Register Executors‘ configuration with the local shuffle service, if one should exist.
    if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
      registerWithExternalShuffleServer()
    }
  }

  private def registerWithExternalShuffleServer() {
    logInfo("Registering executor with local external shuffle service.")
    val shuffleConfig = new ExecutorShuffleInfo(
      diskBlockManager.localDirs.map(_.toString),
      diskBlockManager.subDirsPerLocalDir,
      shuffleManager.getClass.getName)

    val MAX_ATTEMPTS = 3
    val SLEEP_TIME_SECS = 5

    for (i <- 1 to MAX_ATTEMPTS) {
      try {
        // Synchronous and will throw an exception if we cannot connect.
        shuffleClient.asInstanceOf[ExternalShuffleClient].registerWithShuffleServer(
          shuffleServerId.host, shuffleServerId.port, shuffleServerId.executorId, shuffleConfig)
        return
      } catch {
        case e: Exception if i < MAX_ATTEMPTS =>
          logError(s"Failed to connect to external shuffle server, will retry ${MAX_ATTEMPTS - i}"
            + s" more times after waiting $SLEEP_TIME_SECS seconds...", e)
          Thread.sleep(SLEEP_TIME_SECS * 1000)
      }
    }
  }

  /**
   * 向blockManager上报所有的块信息。这个是很重要的,比如在一个executor崩溃之后恢复块等情况
     如果master返回false这个方法就会失败(表明slave需要重新注册),心跳检测或者新的块信息上报时将会发现这个错误信息,然后将会尝试重新注册所有块信息
   */
  private def reportAllBlocks(): Unit = {
    logInfo(s"Reporting ${blockInfoManager.size} blocks to the master.")
    for ((blockId, info) <- blockInfoManager.entries) {
      // 获取块信息
      val status = getCurrentBlockStatus(blockId, info)
      // 更新块信息
      if (!tryToReportBlockStatus(blockId, info, status)) {
        logError(s"Failed to report $blockId to master; giving up.")
        return
      }
    }
  }

  /**
   * 重新向master注册,并上报块信息。如果心跳检测发现表明块没有注册,心跳检测线程将会调用这个方法
   */
  def reregister(): Unit = {
    // TODO: We might need to rate limit re-registering.
    logInfo(s"BlockManager $blockManagerId re-registering with master")
    master.registerBlockManager(blockManagerId, maxMemory, slaveEndpoint)
    reportAllBlocks()
  }

  /**
   * 同步注册
   */
  private def asyncReregister(): Unit = {
    asyncReregisterLock.synchronized {
      if (asyncReregisterTask == null) {
        asyncReregisterTask = Future[Unit] {
          // This is a blocking action and should run in futureExecutionContext which is a cached
          // thread pool
          reregister()
          asyncReregisterLock.synchronized {
            asyncReregisterTask = null
          }
        }(futureExecutionContext)
      }
    }
  }

  /**
   * For testing. Wait for any pending asynchronous re-registration; otherwise, do nothing.
   */
  def waitForAsyncReregister(): Unit = {
    val task = asyncReregisterTask
    if (task != null) {
      try {
        Await.ready(task, Duration.Inf)
      } catch {
        case NonFatal(t) =>
          throw new Exception("Error occurred while waiting for async. reregistration", t)
      }
    }
  }

  /**
   * 获取块数据的接口,如果没有抛出异常
   */
  override def getBlockData(blockId: BlockId): ManagedBuffer = {
    if (blockId.isShuffle) {
     // shuflle,IndexShuffleBlockResolver shuffleManager.shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId])
    } else {
      getLocalBytes(blockId) match {
        case Some(buffer) => new BlockManagerManagedBuffer(blockInfoManager, blockId, buffer)
        case None => throw new BlockNotFoundException(blockId.toString)
      }
    }
  }

  /**
   * 使用给定的存储级别存储数据
   */
  override def putBlockData(
      blockId: BlockId,
      data: ManagedBuffer,
      level: StorageLevel,
      classTag: ClassTag[_]): Boolean = {
    putBytes(blockId, new ChunkedByteBuffer(data.nioByteBuffer()), level)(classTag)
  }

  /**
   * 获取给定的id块的状态
   */
  def getStatus(blockId: BlockId): Option[BlockStatus] = {
    blockInfoManager.get(blockId).map { info =>
      val memSize = if (memoryStore.contains(blockId)) memoryStore.getSize(blockId) else 0L
      val diskSize = if (diskStore.contains(blockId)) diskStore.getSize(blockId) else 0L
      BlockStatus(info.level, memSize = memSize, diskSize = diskSize)
    }
  }

  /**
   * 根据条件过滤出满足条件的block id,这个方法也会查询在diskblockmanager中的内容
   */
  def getMatchingBlockIds(filter: BlockId => Boolean): Seq[BlockId] = {
    // The `toArray` is necessary here in order to force the list to be materialized so that we
    // don‘t try to serialize a lazy iterator when responding to client requests.
    (blockInfoManager.entries.map(_._1) ++ diskBlockManager.getAllBlocks())
      .filter(filter)
      .toArray
      .toSeq
  }

  /**
   * 向blockmanagermaster上报这个数据块的存储状态,这个方法将会发送一个反应block当前状态的更新消息,而不是这个块信息中所需的存储级别。比如一个block设置了存储级别MEMORY_AND_DISK,但是现在可能现在只存储在磁盘上。
   
   droppedMemorySize这个参数存在时,可以将数据从内存刷新到磁盘。
   */
  private def reportBlockStatus(
      blockId: BlockId,
      info: BlockInfo,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Unit = {
    val needReregister = !tryToReportBlockStatus(blockId, info, status, droppedMemorySize)
    if (needReregister) {
      logInfo(s"Got told to re-register updating block $blockId")
      // Re-registering will report our new block for free.
      asyncReregister()
    }
    logDebug(s"Told master about block $blockId")
  }

  /**
   * 实际上发送了UpdateBlockInfo这个消息,接收返回blockmanagermaster的回复,如果成功记录了这条记录返回true,需要重新注册返回false
   */
  private def tryToReportBlockStatus(
      blockId: BlockId,
      info: BlockInfo,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Boolean = {
    if (info.tellMaster) {
      val storageLevel = status.storageLevel
      val inMemSize = Math.max(status.memSize, droppedMemorySize)
      val onDiskSize = status.diskSize
      master.updateBlockInfo(blockManagerId, blockId, storageLevel, inMemSize, onDiskSize)
    } else {
      true
    }
  }

  /**
   * 返回给定数据块的存储状态。如果数据已经刷新到磁盘,返回最新的存储级别并更新内存和磁盘的数据大小
   */
  private def getCurrentBlockStatus(blockId: BlockId, info: BlockInfo): BlockStatus = {
    info.synchronized {
      info.level match {
        case null =>
          BlockStatus(StorageLevel.NONE, memSize = 0L, diskSize = 0L)
        case level =>
          val inMem = level.useMemory && memoryStore.contains(blockId)
          val onDisk = level.useDisk && diskStore.contains(blockId)
          val deserialized = if (inMem) level.deserialized else false
          val replication = if (inMem  || onDisk) level.replication else 1
          val storageLevel = StorageLevel(
            useDisk = onDisk,
            useMemory = inMem,
            useOffHeap = level.useOffHeap,
            deserialized = deserialized,
            replication = replication)
          val memSize = if (inMem) memoryStore.getSize(blockId) else 0L
          val diskSize = if (onDisk) diskStore.getSize(blockId) else 0L
          BlockStatus(storageLevel, memSize, diskSize)
      }
    }
  }

  /**
   * 获取block的位置
   */
  private def getLocationBlockIds(blockIds: Array[BlockId]): Array[Seq[BlockManagerId]] = {
    val startTimeMs = System.currentTimeMillis
    val locations = master.getLocations(blockIds).toArray
    logDebug("Got multiple block location in %s".format(Utils.getUsedTimeMs(startTimeMs)))
    locations
  }

  /**
   * 本地读取失败时运行清理代码
   * 移除block时必须获得block的读锁
   */
  private def handleLocalReadFailure(blockId: BlockId): Nothing = {
    // 释放锁
    releaseLock(blockId)
    // 移除丢失的block
    removeBlock(blockId)
    throw new SparkException(s"Block $blockId was not found even though it‘s read-locked")
  }

  /**
   * 从blockmanager中获取block
   */
  def getLocalValues(blockId: BlockId): Option[BlockResult] = {
    logDebug(s"Getting local block $blockId")
    blockInfoManager.lockForReading(blockId) match {
      case None =>
        logDebug(s"Block $blockId was not found")
        None
      case Some(info) =>
        val level = info.level
        logDebug(s"Level for block $blockId is $level")
        // 如果还在内存中
        if (level.useMemory && memoryStore.contains(blockId)) {
          val iter: Iterator[Any] = if (level.deserialized) {
            memoryStore.getValues(blockId).get
          } else {
            serializerManager.dataDeserializeStream(
              blockId, memoryStore.getBytes(blockId).get.toInputStream())(info.classTag)
          }
          val ci = CompletionIterator[Any, Iterator[Any]](iter, releaseLock(blockId))
          Some(new BlockResult(ci, DataReadMethod.Memory, info.size))
        } else if (level.useDisk && diskStore.contains(blockId)) {       // 已经刷新到磁盘
          val iterToReturn: Iterator[Any] = {
            val diskBytes = diskStore.getBytes(blockId)
            if (level.deserialized) {
              val diskValues = serializerManager.dataDeserializeStream(
                blockId,
                diskBytes.toInputStream(dispose = true))(info.classTag)
              maybeCacheDiskValuesInMemory(info, blockId, level, diskValues)
            } else {
              val stream = maybeCacheDiskBytesInMemory(info, blockId, level, diskBytes)
                .map {_.toInputStream(dispose = false)}
                .getOrElse { diskBytes.toInputStream(dispose = true) }
              serializerManager.dataDeserializeStream(blockId, stream)(info.classTag)
            }
          }
          val ci = CompletionIterator[Any, Iterator[Any]](iterToReturn, releaseLock(blockId))
          Some(new BlockResult(ci, DataReadMethod.Disk, info.size))
        } else {
          // 内存和磁盘都没有读取失败
          handleLocalReadFailure(blockId)
        }
    }
  }

  /**
   * 从本地blockmanager中获取块的序列化字节
   */
  def getLocalBytes(blockId: BlockId): Option[ChunkedByteBuffer] = {
    logDebug(s"Getting local block $blockId as bytes")
    // As an optimization for map output fetches, if the block is for a shuffle, return it
    // without acquiring a lock; the disk store never deletes (recent) items so this should work
    if (blockId.isShuffle) {
      val shuffleBlockResolver = shuffleManager.shuffleBlockResolver
      // TODO: This should gracefully handle case where local block is not available. Currently
      // downstream code will throw an exception.
      Option(
        new ChunkedByteBuffer(
          shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId]).nioByteBuffer()))
    } else {
      blockInfoManager.lockForReading(blockId).map { info => doGetLocalBytes(blockId, info) }
    }
  }

  /**
   * 从本地blockmanager中获取块的序列化字节
   *
   * 调用这个方法时必须获取这个block的读锁,持有锁到运行成功,如果出现异常释放锁
   */
  private def doGetLocalBytes(blockId: BlockId, info: BlockInfo): ChunkedByteBuffer = {
    val level = info.level
    logDebug(s"Level for block $blockId is $level")
    // 按序读取块,首先从内存中,然后磁盘中,然后退回到序列化内存对象中,如果块不存在,抛出异常
    if (level.deserialized) {
      // 从磁盘中读取反序列化的副本
      if (level.useDisk && diskStore.contains(blockId)) {
        diskStore.getBytes(blockId)
      } else if (level.useMemory && memoryStore.contains(blockId)) {
        // 如果从磁盘中没有找到,到内存中
        serializerManager.dataSerialize(blockId, memoryStore.getValues(blockId).get)
      } else {
        handleLocalReadFailure(blockId)
      }
    } else {  // storage level is serialized
      if (level.useMemory && memoryStore.contains(blockId)) {
        memoryStore.getBytes(blockId).get
      } else if (level.useDisk && diskStore.contains(blockId)) {
        val diskBytes = diskStore.getBytes(blockId)
        maybeCacheDiskBytesInMemory(info, blockId, level, diskBytes).getOrElse(diskBytes)
      } else {
        handleLocalReadFailure(blockId)
      }
    }
  }

  /**
   * 从远程blockmanager获取block
   */
  private def getRemoteValues(blockId: BlockId): Option[BlockResult] = {
    getRemoteBytes(blockId).map { data =>
      val values =
        serializerManager.dataDeserializeStream(blockId, data.toInputStream(dispose = true))
      new BlockResult(values, DataReadMethod.Network, data.size)
    }
  }

  /**
   * 返回给定block的地址列表,优先处理本地的
   */
  private def getLocations(blockId: BlockId): Seq[BlockManagerId] = {
    val locs = Random.shuffle(master.getLocations(blockId))
    val (preferredLocs, otherLocs) = locs.partition { loc => blockManagerId.host == loc.host }
    preferredLocs ++ otherLocs
  }

  /**
   * 用远程的blcokmanager中以序列化字节方式获取block数据
   */
  def getRemoteBytes(blockId: BlockId): Option[ChunkedByteBuffer] = {
    logDebug(s"Getting remote block $blockId")
    require(blockId != null, "BlockId is null")
    var runningFailureCount = 0
    var totalFailureCount = 0
    val locations = getLocations(blockId)
    val maxFetchFailures = locations.size
    var locationIterator = locations.iterator
    while (locationIterator.hasNext) {
      val loc = locationIterator.next()
      logDebug(s"Getting remote block $blockId from $loc")
      val data = try {
        blockTransferService.fetchBlockSync(
          loc.host, loc.port, loc.executorId, blockId.toString).nioByteBuffer()
      } catch {
        case NonFatal(e) =>
          runningFailureCount += 1
          totalFailureCount += 1

          if (totalFailureCount >= maxFetchFailures) {
            // Give up trying anymore locations. Either we‘ve tried all of the original locations,
            // or we‘ve refreshed the list of locations from the master, and have still
            // hit failures after trying locations from the refreshed list.
            throw new BlockFetchException(s"Failed to fetch block after" +
              s" ${totalFailureCount} fetch failures. Most recent failure cause:", e)
          }

          logWarning(s"Failed to fetch remote block $blockId " +
            s"from $loc (failed attempt $runningFailureCount)", e)

          // If there is a large number of executors then locations list can contain a
          // large number of stale entries causing a large number of retries that may
          // take a significant amount of time. To get rid of these stale entries
          // we refresh the block locations after a certain number of fetch failures
          if (runningFailureCount >= maxFailuresBeforeLocationRefresh) {
            locationIterator = getLocations(blockId).iterator
            logDebug(s"Refreshed locations from the driver " +
              s"after ${runningFailureCount} fetch failures.")
            runningFailureCount = 0
          }

          // This location failed, so we retry fetch from a different one by returning null here
          null
      }

      if (data != null) {
        return Some(new ChunkedByteBuffer(data))
      }
      logDebug(s"The value of block $blockId is null")
    }
    logDebug(s"Block $blockId not found")
    None
  }

  /**
   * 从blockmanager获取block
     如果块存储在本地,那么会获取block的读锁;如果从远程blockmananger中获取,则不用获取读锁,
   */
  def get(blockId: BlockId): Option[BlockResult] = {
    val local = getLocalValues(blockId)
    if (local.isDefined) {
      logInfo(s"Found block $blockId locally")
      return local
    }
    val remote = getRemoteValues(blockId)
    if (remote.isDefined) {
      logInfo(s"Found block $blockId remotely")
      return remote
    }
    None
  }

  /**
   * Downgrades an exclusive write lock to a shared read lock.
   */
  def downgradeLock(blockId: BlockId): Unit = {
    blockInfoManager.downgradeLock(blockId)
  }

  /**
   * Release a lock on the given block.
   */
  def releaseLock(blockId: BlockId): Unit = {
    blockInfoManager.unlock(blockId)
  }

  /**
   * 向blockmanager注册task
   */
  def registerTask(taskAttemptId: Long): Unit = {
    blockInfoManager.registerTask(taskAttemptId)
  }

  /**
   * Release all locks for the given task.
   *
   * @return the blocks whose locks were released.
   */
  def releaseAllLocksForTask(taskAttemptId: Long): Seq[BlockId] = {
    blockInfoManager.releaseAllLocksForTask(taskAttemptId)
  }

  /**
   * 检索给定的block,如果不存在就调用makeIterator这个方法计算block并缓存返回这个block
   */
  def getOrElseUpdate[T](
      blockId: BlockId,
      level: StorageLevel,
      classTag: ClassTag[T],
      makeIterator: () => Iterator[T]): Either[BlockResult, Iterator[T]] = {
    // Attempt to read the block from local or remote storage. If it‘s present, then we don‘t need
    // to go through the local-get-or-put path.
    get(blockId) match {
      case Some(block) =>
        return Left(block)
      case _ =>
        // Need to compute the block.
    }
    // Initially we hold no locks on this block.
    doPutIterator(blockId, makeIterator, level, classTag, keepReadLock = true) match {
      case None =>
        // doPut() didn‘t hand work back to us, so the block already existed or was successfully
        // stored. Therefore, we now hold a read lock on the block.
        val blockResult = getLocalValues(blockId).getOrElse {
          // Since we held a read lock between the doPut() and get() calls, the block should not
          // have been evicted, so get() not returning the block indicates some internal error.
          releaseLock(blockId)
          throw new SparkException(s"get() failed for block $blockId even though we held a lock")
        }
        // We already hold a read lock on the block from the doPut() call and getLocalValues()
        // acquires the lock again, so we need to call releaseLock() here so that the net number
        // of lock acquisitions is 1 (since the caller will only call release() once).
        releaseLock(blockId)
        Left(blockResult)
      case Some(iter) =>
        // The put failed, likely because the data was too large to fit in memory and could not be
        // dropped to disk. Therefore, we need to pass the input iterator back to the caller so
        // that they can decide what to do with the values (e.g. process them without caching).
       Right(iter)
    }
  }

  /**
   * @return true if the block was stored or false if an error occurred.
   */
  def putIterator[T: ClassTag](
      blockId: BlockId,
      values: Iterator[T],
      level: StorageLevel,
      tellMaster: Boolean = true): Boolean = {
    require(values != null, "Values is null")
    doPutIterator(blockId, () => values, level, implicitly[ClassTag[T]], tellMaster) match {
      case None =>
        true
      case Some(iter) =>
        // Caller doesn‘t care about the iterator values, so we can close the iterator here
        // to free resources earlier
        iter.close()
        false
    }
  }

  /**
   * 获取block的写入流,将数据直接写入到磁盘
   */
  def getDiskWriter(
      blockId: BlockId,
      file: File,
      serializerInstance: SerializerInstance,
      bufferSize: Int,
      writeMetrics: ShuffleWriteMetrics): DiskBlockObjectWriter = {
    val compressStream: OutputStream => OutputStream =
      serializerManager.wrapForCompression(blockId, _)
    val syncWrites = conf.getBoolean("spark.shuffle.sync", false)
    new DiskBlockObjectWriter(file, serializerInstance, bufferSize, compressStream,
      syncWrites, writeMetrics, blockId)
  }

  /**
   * 将新序列化的字节写入到blockmanager
   */
  def putBytes[T: ClassTag](
      blockId: BlockId,
      bytes: ChunkedByteBuffer,
      level: StorageLevel,
      tellMaster: Boolean = true): Boolean = {
    require(bytes != null, "Bytes is null")
    doPutBytes(blockId, bytes, level, implicitly[ClassTag[T]], tellMaster)
  }

  /**
   * 根据给定的级别将给定的字节写入块中,如果块已经存在,数据不会覆盖
   */
  private def doPutBytes[T](
      blockId: BlockId,
      bytes: ChunkedByteBuffer,
      level: StorageLevel,
      classTag: ClassTag[T],
      tellMaster: Boolean = true,
      keepReadLock: Boolean = false): Boolean = {
    doPut(blockId, level, classTag, tellMaster = tellMaster, keepReadLock = keepReadLock) { info =>
      val startTimeMs = System.currentTimeMillis
      // 因为存储字节,在本地存储之前需要初始化副本
      // This is faster as data is already serialized and ready to send.
      val replicationFuture = if (level.replication > 1) {
        Future {
          // This is a blocking action and should run in futureExecutionContext which is a cached
          // thread pool
          replicate(blockId, bytes, level, classTag)
        }(futureExecutionContext)
      } else {
        null
      }

      val size = bytes.size

      if (level.useMemory) {
        // 先存储到内存中
        val putSucceeded = if (level.deserialized) {
          val values =
            serializerManager.dataDeserializeStream(blockId, bytes.toInputStream())(classTag)
          memoryStore.putIteratorAsValues(blockId, values, classTag) match {
            case Right(_) => true
            case Left(iter) =>
              // If putting deserialized values in memory failed, we will put the bytes directly to
              // disk, so we don‘t need this iterator and can close it to free resources earlier.
              iter.close()
              false
          }
        } else {
          memoryStore.putBytes(blockId, size, level.memoryMode, () => bytes)
        }
        if (!putSucceeded && level.useDisk) {
          logWarning(s"Persisting block $blockId to disk instead.")
          diskStore.putBytes(blockId, bytes)
        }
      } else if (level.useDisk) {
        diskStore.putBytes(blockId, bytes)
      }

      val putBlockStatus = getCurrentBlockStatus(blockId, info)
      val blockWasSuccessfullyStored = putBlockStatus.storageLevel.isValid
      if (blockWasSuccessfullyStored) {
        // Now that the block is in either the memory, externalBlockStore, or disk store,
        // tell the master about it.
        info.size = size
        if (tellMaster) {
          reportBlockStatus(blockId, info, putBlockStatus)
        }
        Option(TaskContext.get()).foreach { c =>
          c.taskMetrics().incUpdatedBlockStatuses(blockId -> putBlockStatus)
        }
      }
      logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
      if (level.replication > 1) {
        // Wait for asynchronous replication to finish
        try {
          Await.ready(replicationFuture, Duration.Inf)
        } catch {
          case NonFatal(t) =>
            throw new Exception("Error occurred while waiting for replication to finish", t)
        }
      }
      if (blockWasSuccessfullyStored) {
        None
      } else {
        Some(bytes)
      }
    }.isEmpty
  }

  /**
   * Helper method used to abstract common code from [[doPutBytes()]] and [[doPutIterator()]].
   *
   * @param putBody a function which attempts the actual put() and returns None on success
   *                or Some on failure.
   */
  private def doPut[T](
      blockId: BlockId,
      level: StorageLevel,
      classTag: ClassTag[_],
      tellMaster: Boolean,
      keepReadLock: Boolean)(putBody: BlockInfo => Option[T]): Option[T] = {

    require(blockId != null, "BlockId is null")
    require(level != null && level.isValid, "StorageLevel is null or invalid")

    val putBlockInfo = {
      val newInfo = new BlockInfo(level, classTag, tellMaster)
      if (blockInfoManager.lockNewBlockForWriting(blockId, newInfo)) {
        newInfo
      } else {
        logWarning(s"Block $blockId already exists on this machine; not re-adding it")
        if (!keepReadLock) {
          // lockNewBlockForWriting returned a read lock on the existing block, so we must free it:
          releaseLock(blockId)
        }
        return None
      }
    }

    val startTimeMs = System.currentTimeMillis
    var blockWasSuccessfullyStored: Boolean = false
    val result: Option[T] = try {
      val res = putBody(putBlockInfo)
      blockWasSuccessfullyStored = res.isEmpty
      res
    } finally {
      if (blockWasSuccessfullyStored) {
        if (keepReadLock) {
          blockInfoManager.downgradeLock(blockId)
        } else {
          blockInfoManager.unlock(blockId)
        }
      } else {
        blockInfoManager.removeBlock(blockId)
        logWarning(s"Putting block $blockId failed")
      }
    }
    if (level.replication > 1) {
      logDebug("Putting block %s with replication took %s"
        .format(blockId, Utils.getUsedTimeMs(startTimeMs)))
    } else {
      logDebug("Putting block %s without replication took %s"
        .format(blockId, Utils.getUsedTimeMs(startTimeMs)))
    }
    result
  }

  /**
   * Put the given block according to the given level in one of the block stores, replicating
   * the values if necessary.
   *
   * If the block already exists, this method will not overwrite it.
   *
   * @param keepReadLock if true, this method will hold the read lock when it returns (even if the
   *                     block already exists). If false, this method will hold no locks when it
   *                     returns.
   * @return None if the block was already present or if the put succeeded, or Some(iterator)
   *         if the put failed.
   */
  private def doPutIterator[T](
      blockId: BlockId,
      iterator: () => Iterator[T],
      level: StorageLevel,
      classTag: ClassTag[T],
      tellMaster: Boolean = true,
      keepReadLock: Boolean = false): Option[PartiallyUnrolledIterator[T]] = {
    doPut(blockId, level, classTag, tellMaster = tellMaster, keepReadLock = keepReadLock) { info =>
      val startTimeMs = System.currentTimeMillis
      var iteratorFromFailedMemoryStorePut: Option[PartiallyUnrolledIterator[T]] = None
      // Size of the block in bytes
      var size = 0L
      if (level.useMemory) {
        // Put it in memory first, even if it also has useDisk set to true;
        // We will drop it to disk later if the memory store can‘t hold it.
        if (level.deserialized) {
          memoryStore.putIteratorAsValues(blockId, iterator(), classTag) match {
            case Right(s) =>
              size = s
            case Left(iter) =>
              // Not enough space to unroll this block; drop to disk if applicable
              if (level.useDisk) {
                logWarning(s"Persisting block $blockId to disk instead.")
                diskStore.put(blockId) { fileOutputStream =>
                  serializerManager.dataSerializeStream(blockId, fileOutputStream, iter)(classTag)
                }
                size = diskStore.getSize(blockId)
              } else {
                iteratorFromFailedMemoryStorePut = Some(iter)
              }
          }
        } else { // !level.deserialized
          memoryStore.putIteratorAsBytes(blockId, iterator(), classTag, level.memoryMode) match {
            case Right(s) =>
              size = s
            case Left(partiallySerializedValues) =>
              // Not enough space to unroll this block; drop to disk if applicable
              if (level.useDisk) {
                logWarning(s"Persisting block $blockId to disk instead.")
                diskStore.put(blockId) { fileOutputStream =>
                  partiallySerializedValues.finishWritingToStream(fileOutputStream)
                }
                size = diskStore.getSize(blockId)
              } else {
                iteratorFromFailedMemoryStorePut = Some(partiallySerializedValues.valuesIterator)
              }
          }
        }

      } else if (level.useDisk) {
        diskStore.put(blockId) { fileOutputStream =>
          serializerManager.dataSerializeStream(blockId, fileOutputStream, iterator())(classTag)
        }
        size = diskStore.getSize(blockId)
      }

      val putBlockStatus = getCurrentBlockStatus(blockId, info)
      val blockWasSuccessfullyStored = putBlockStatus.storageLevel.isValid
      if (blockWasSuccessfullyStored) {
        // Now that the block is in either the memory, externalBlockStore, or disk store,
        // tell the master about it.
        info.size = size
        if (tellMaster) {
          reportBlockStatus(blockId, info, putBlockStatus)
        }
        Option(TaskContext.get()).foreach { c =>
          c.taskMetrics().incUpdatedBlockStatuses(blockId -> putBlockStatus)
        }
        logDebug("Put block %s locally took %s".format(blockId, Utils.getUsedTimeMs(startTimeMs)))
        if (level.replication > 1) {
          val remoteStartTime = System.currentTimeMillis
          val bytesToReplicate = doGetLocalBytes(blockId, info)
          try {
            replicate(blockId, bytesToReplicate, level, classTag)
          } finally {
            bytesToReplicate.dispose()
          }
          logDebug("Put block %s remotely took %s"
            .format(blockId, Utils.getUsedTimeMs(remoteStartTime)))
        }
      }
      assert(blockWasSuccessfullyStored == iteratorFromFailedMemoryStorePut.isEmpty)
      iteratorFromFailedMemoryStorePut
    }
  }

  /**
   * Attempts to cache spilled bytes read from disk into the MemoryStore in order to speed up
   * subsequent reads. This method requires the caller to hold a read lock on the block.
   *
   * @return a copy of the bytes from the memory store if the put succeeded, otherwise None.
   *         If this returns bytes from the memory store then the original disk store bytes will
   *         automatically be disposed and the caller should not continue to use them. Otherwise,
   *         if this returns None then the original disk store bytes will be unaffected.
   */
  private def maybeCacheDiskBytesInMemory(
      blockInfo: BlockInfo,
      blockId: BlockId,
      level: StorageLevel,
      diskBytes: ChunkedByteBuffer): Option[ChunkedByteBuffer] = {
    require(!level.deserialized)
    if (level.useMemory) {
      // Synchronize on blockInfo to guard against a race condition where two readers both try to
      // put values read from disk into the MemoryStore.
      blockInfo.synchronized {
        if (memoryStore.contains(blockId)) {
          diskBytes.dispose()
          Some(memoryStore.getBytes(blockId).get)
        } else {
          val allocator = level.memoryMode match {
            case MemoryMode.ON_HEAP => ByteBuffer.allocate _
            case MemoryMode.OFF_HEAP => Platform.allocateDirectBuffer _
          }
          val putSucceeded = memoryStore.putBytes(blockId, diskBytes.size, level.memoryMode, () => {
            // https://issues.apache.org/jira/browse/SPARK-6076
            // If the file size is bigger than the free memory, OOM will happen. So if we
            // cannot put it into MemoryStore, copyForMemory should not be created. That‘s why
            // this action is put into a `() => ChunkedByteBuffer` and created lazily.
            diskBytes.copy(allocator)
          })
          if (putSucceeded) {
            diskBytes.dispose()
            Some(memoryStore.getBytes(blockId).get)
          } else {
            None
          }
        }
      }
    } else {
      None
    }
  }

  /**
   * Attempts to cache spilled values read from disk into the MemoryStore in order to speed up
   * subsequent reads. This method requires the caller to hold a read lock on the block.
   *
   * @return a copy of the iterator. The original iterator passed this method should no longer
   *         be used after this method returns.
   */
  private def maybeCacheDiskValuesInMemory[T](
      blockInfo: BlockInfo,
      blockId: BlockId,
      level: StorageLevel,
      diskIterator: Iterator[T]): Iterator[T] = {
    require(level.deserialized)
    val classTag = blockInfo.classTag.asInstanceOf[ClassTag[T]]
    if (level.useMemory) {
      // Synchronize on blockInfo to guard against a race condition where two readers both try to
      // put values read from disk into the MemoryStore.
      blockInfo.synchronized {
        if (memoryStore.contains(blockId)) {
          // Note: if we had a means to discard the disk iterator, we would do that here.
          memoryStore.getValues(blockId).get
        } else {
          memoryStore.putIteratorAsValues(blockId, diskIterator, classTag) match {
            case Left(iter) =>
              // The memory store put() failed, so it returned the iterator back to us:
              iter
            case Right(_) =>
              // The put() succeeded, so we can read the values back:
              memoryStore.getValues(blockId).get
          }
        }
      }.asInstanceOf[Iterator[T]]
    } else {
      diskIterator
    }
  }

  /**
   * Get peer block managers in the system.
   */
  private def getPeers(forceFetch: Boolean): Seq[BlockManagerId] = {
    peerFetchLock.synchronized {
      val cachedPeersTtl = conf.getInt("spark.storage.cachedPeersTtl", 60 * 1000) // milliseconds
      val timeout = System.currentTimeMillis - lastPeerFetchTime > cachedPeersTtl
      if (cachedPeers == null || forceFetch || timeout) {
        cachedPeers = master.getPeers(blockManagerId).sortBy(_.hashCode)
        lastPeerFetchTime = System.currentTimeMillis
        logDebug("Fetched peers from master: " + cachedPeers.mkString("[", ",", "]"))
      }
      cachedPeers
    }
  }

  /**
   * Replicate block to another node. Not that this is a blocking call that returns after
   * the block has been replicated.
   */
  private def replicate(
      blockId: BlockId,
      data: ChunkedByteBuffer,
      level: StorageLevel,
      classTag: ClassTag[_]): Unit = {
    val maxReplicationFailures = conf.getInt("spark.storage.maxReplicationFailures", 1)
    val numPeersToReplicateTo = level.replication - 1
    val peersForReplication = new ArrayBuffer[BlockManagerId]
    val peersReplicatedTo = new ArrayBuffer[BlockManagerId]
    val peersFailedToReplicateTo = new ArrayBuffer[BlockManagerId]
    val tLevel = StorageLevel(
      useDisk = level.useDisk,
      useMemory = level.useMemory,
      useOffHeap = level.useOffHeap,
      deserialized = level.deserialized,
      replication = 1)
    val startTime = System.currentTimeMillis
    val random = new Random(blockId.hashCode)

    var replicationFailed = false
    var failures = 0
    var done = false

    // Get cached list of peers
    peersForReplication ++= getPeers(forceFetch = false)

    // Get a random peer. Note that this selection of a peer is deterministic on the block id.
    // So assuming the list of peers does not change and no replication failures,
    // if there are multiple attempts in the same node to replicate the same block,
    // the same set of peers will be selected.
    def getRandomPeer(): Option[BlockManagerId] = {
      // If replication had failed, then force update the cached list of peers and remove the peers
      // that have been already used
      if (replicationFailed) {
        peersForReplication.clear()
        peersForReplication ++= getPeers(forceFetch = true)
        peersForReplication --= peersReplicatedTo
        peersForReplication --= peersFailedToReplicateTo
      }
      if (!peersForReplication.isEmpty) {
        Some(peersForReplication(random.nextInt(peersForReplication.size)))
      } else {
        None
      }
    }

    // One by one choose a random peer and try uploading the block to it
    // If replication fails (e.g., target peer is down), force the list of cached peers
    // to be re-fetched from driver and then pick another random peer for replication. Also
    // temporarily black list the peer for which replication failed.
    //
    // This selection of a peer and replication is continued in a loop until one of the
    // following 3 conditions is fulfilled:
    // (i) specified number of peers have been replicated to
    // (ii) too many failures in replicating to peers
    // (iii) no peer left to replicate to
    //
    while (!done) {
      getRandomPeer() match {
        case Some(peer) =>
          try {
            val onePeerStartTime = System.currentTimeMillis
            logTrace(s"Trying to replicate $blockId of ${data.size} bytes to $peer")
            blockTransferService.uploadBlockSync(
              peer.host,
              peer.port,
              peer.executorId,
              blockId,
              new NettyManagedBuffer(data.toNetty),
              tLevel,
              classTag)
            logTrace(s"Replicated $blockId of ${data.size} bytes to $peer in %s ms"
              .format(System.currentTimeMillis - onePeerStartTime))
            peersReplicatedTo += peer
            peersForReplication -= peer
            replicationFailed = false
            if (peersReplicatedTo.size == numPeersToReplicateTo) {
              done = true  // specified number of peers have been replicated to
            }
          } catch {
            case e: Exception =>
              logWarning(s"Failed to replicate $blockId to $peer, failure #$failures", e)
              failures += 1
              replicationFailed = true
              peersFailedToReplicateTo += peer
              if (failures > maxReplicationFailures) { // too many failures in replicating to peers
                done = true
              }
          }
        case None => // no peer left to replicate to
          done = true
      }
    }
    val timeTakeMs = (System.currentTimeMillis - startTime)
    logDebug(s"Replicating $blockId of ${data.size} bytes to " +
      s"${peersReplicatedTo.size} peer(s) took $timeTakeMs ms")
    if (peersReplicatedTo.size < numPeersToReplicateTo) {
      logWarning(s"Block $blockId replicated to only " +
        s"${peersReplicatedTo.size} peer(s) instead of $numPeersToReplicateTo peers")
    }
  }

  /**
   * Read a block consisting of a single object.
   */
  def getSingle(blockId: BlockId): Option[Any] = {
    get(blockId).map(_.data.next())
  }

  /**
   * Write a block consisting of a single object.
   *
   * @return true if the block was stored or false if the block was already stored or an
   *         error occurred.
   */
  def putSingle[T: ClassTag](
      blockId: BlockId,
      value: T,
      level: StorageLevel,
      tellMaster: Boolean = true): Boolean = {
    putIterator(blockId, Iterator(value), level, tellMaster)
  }

  /**
   * Drop a block from memory, possibly putting it on disk if applicable. Called when the memory
   * store reaches its limit and needs to free up space.
   *
   * If `data` is not put on disk, it won‘t be created.
   *
   * The caller of this method must hold a write lock on the block before calling this method.
   * This method does not release the write lock.
   *
   * @return the block‘s new effective StorageLevel.
   */
  private[storage] override def dropFromMemory[T: ClassTag](
      blockId: BlockId,
      data: () => Either[Array[T], ChunkedByteBuffer]): StorageLevel = {
    logInfo(s"Dropping block $blockId from memory")
    val info = blockInfoManager.assertBlockIsLockedForWriting(blockId)
    var blockIsUpdated = false
    val level = info.level

    // Drop to disk, if storage level requires
    if (level.useDisk && !diskStore.contains(blockId)) {
      logInfo(s"Writing block $blockId to disk")
      data() match {
        case Left(elements) =>
          diskStore.put(blockId) { fileOutputStream =>
            serializerManager.dataSerializeStream(
              blockId,
              fileOutputStream,
              elements.toIterator)(info.classTag.asInstanceOf[ClassTag[T]])
          }
        case Right(bytes) =>
          diskStore.putBytes(blockId, bytes)
      }
      blockIsUpdated = true
    }

    // Actually drop from memory store
    val droppedMemorySize =
      if (memoryStore.contains(blockId)) memoryStore.getSize(blockId) else 0L
    val blockIsRemoved = memoryStore.remove(blockId)
    if (blockIsRemoved) {
      blockIsUpdated = true
    } else {
      logWarning(s"Block $blockId could not be dropped from memory as it does not exist")
    }

    val status = getCurrentBlockStatus(blockId, info)
    if (info.tellMaster) {
      reportBlockStatus(blockId, info, status, droppedMemorySize)
    }
    if (blockIsUpdated) {
      Option(TaskContext.get()).foreach { c =>
        c.taskMetrics().incUpdatedBlockStatuses(blockId -> status)
      }
    }
    status.storageLevel
  }

  /**
   * Remove all blocks belonging to the given RDD.
   *
   * @return The number of blocks removed.
   */
  def removeRdd(rddId: Int): Int = {
    // TODO: Avoid a linear scan by creating another mapping of RDD.id to blocks.
    logInfo(s"Removing RDD $rddId")
    val blocksToRemove = blockInfoManager.entries.flatMap(_._1.asRDDId).filter(_.rddId == rddId)
    blocksToRemove.foreach { blockId => removeBlock(blockId, tellMaster = false) }
    blocksToRemove.size
  }

  /**
   * Remove all blocks belonging to the given broadcast.
   */
  def removeBroadcast(broadcastId: Long, tellMaster: Boolean): Int = {
    logDebug(s"Removing broadcast $broadcastId")
    val blocksToRemove = blockInfoManager.entries.map(_._1).collect {
      case bid @ BroadcastBlockId(`broadcastId`, _) => bid
    }
    blocksToRemove.foreach { blockId => removeBlock(blockId, tellMaster) }
    blocksToRemove.size
  }

  /**
   * Remove a block from both memory and disk.
   */
  def removeBlock(blockId: BlockId, tellMaster: Boolean = true): Unit = {
    logDebug(s"Removing block $blockId")
    blockInfoManager.lockForWriting(blockId) match {
      case None =>
        // The block has already been removed; do nothing.
        logWarning(s"Asked to remove block $blockId, which does not exist")
      case Some(info) =>
        // Removals are idempotent in disk store and memory store. At worst, we get a warning.
        val removedFromMemory = memoryStore.remove(blockId)
        val removedFromDisk = diskStore.remove(blockId)
        if (!removedFromMemory && !removedFromDisk) {
          logWarning(s"Block $blockId could not be removed as it was not found in either " +
            "the disk, memory, or external block store")
        }
        blockInfoManager.removeBlock(blockId)
        val removeBlockStatus = getCurrentBlockStatus(blockId, info)
        if (tellMaster && info.tellMaster) {
          reportBlockStatus(blockId, info, removeBlockStatus)
        }
        Option(TaskContext.get()).foreach { c =>
          c.taskMetrics().incUpdatedBlockStatuses(blockId -> removeBlockStatus)
        }
    }
  }

  def stop(): Unit = {
    blockTransferService.close()
    if (shuffleClient ne blockTransferService) {
      // Closing should be idempotent, but maybe not for the NioBlockTransferService.
      shuffleClient.close()
    }
    diskBlockManager.stop()
    rpcEnv.stop(slaveEndpoint)
    blockInfoManager.clear()
    memoryStore.clear()
    futureExecutionContext.shutdownNow()
    logInfo("BlockManager stopped")
  }
}


private[spark] object BlockManager {
  private val ID_GENERATOR = new IdGenerator

  def blockIdsToHosts(
      blockIds: Array[BlockId],
      env: SparkEnv,
      blockManagerMaster: BlockManagerMaster = null): Map[BlockId, Seq[String]] = {

    // blockManagerMaster != null is used in tests
    assert(env != null || blockManagerMaster != null)
    val blockLocations: Seq[Seq[BlockManagerId]] = if (blockManagerMaster == null) {
      env.blockManager.getLocationBlockIds(blockIds)
    } else {
      blockManagerMaster.getLocations(blockIds)
    }

    val blockManagers = new HashMap[BlockId, Seq[String]]
    for (i <- 0 until blockIds.length) {
      blockManagers(blockIds(i)) = blockLocations(i).map(_.host)
    }
    blockManagers.toMap
  }
}

以上是关于BlockManager源码详解的主要内容,如果未能解决你的问题,请参考以下文章

BlockManager

BlockManager

BlockManager初始化和注册解密BlockManagerMaster工作解密BlockTransferService解密本地数据读写解密远程数据读写解密

BlockManager

Android 逆向类加载器 ClassLoader ( 类加载器源码简介 | BaseDexClassLoader | DexClassLoader | PathClassLoader )(代码片段

Java线程池详解