迭代器
Posted lgh8023
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了迭代器相关的知识,希望对你有一定的参考价值。
迭代器:
1, 什么是迭代器
器: 工具
迭代: 是一个重复的过程, 但是每次重复都是基于上一次的结果而来的
name = ["egon", "lqz", "tank"]
count = 1
while count < len(names):
print(nmes[count])
count += 1
迭代器: 就是一种不依赖索引的取值工具
2, 为何要有迭代器
特性:
1, 是一种通用的迭代取值方案
2, 惰性计算, 节省内存
3, 如何用迭代器
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
dic_iterator = dic.__iter__()
res1 = dic_iterator.__next__()
print(res1)
res2 = dic_iterator.__next__()
print(res2)
res = dic_iterator.__next__()
print(res)
dic_iterator.__next__() # StopIteration 抛出异常
while True:
try:
res = dic_iterator.__next__()
print(res)
except StopIteration: # 解决抛出异常
break
可迭代对象与迭代器对象
内置有__iter__方法的类型称之为: 可迭代对象 / 类型
字典
集合
文件对象(也是迭代器对象)
字符串
列表
元祖
迭代器对象: 内置有__iter_, __next___方法
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
dic_iterator = dic.__iter__()
dic_iterator.__next__()
for工作循环原理
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
dic_iterator = dic.__iter__()
while True:
try:
res = dic_iterator.__next__()
print(res)
except StopIteration:
break
for k in dic:
print(k)
步骤1
dic_iterator = dic.__iter__()
步骤2
k = dic_iterator.__next__(), 执行循环体代码
步骤3
循环往复,直到抛出异常,for循环会帮我们捕捉异常结束循环
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
dic_iterator = dic.__iter__()
for k in dic_iterator:
print(k)
print(dic_iterator)
四:基于同一迭代器的重复取值,效果如何????
示例1:
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
dic_iterator = dic.__iter__()
while True:
try:
res = dic_iterator.__next__()
print(res)
except StopIteration:
break
while True:
try:
res = dic_iterator.__next__()
print(res)
except StopIteration:
break
示例2:
dic = {"name": "egon", ‘age‘: 18, ‘gender‘: "male"}
for k in dic: # dic.__iter__()
print(k)
for k in dic: # dic.__iter__()
print(k)
自定义迭代器来实现惰性计算, 从而达到节省内存的效果
生成器
什么是生成器
但凡是函数内出现了yield关键字, 调用函数将不会执行函数体代码, 会得到一个返回值,
该返回值就是我们自定义的迭代器, 称之为生成器
def func():
print("hello")
yield 1
print("hello")
yield 2
print("hello")
yield 3
g = func()
print(g) # 生成器本身就是一个迭代器
res = next(g)
print(res)
res = next(g)
print(res)
res = next(g)
print(res)
yield与return
相同点: 都可以用来返回值
不同点:
return只能返回一次值, 函数就立刻结束了
yield能返回多次值, yield可以挂起函数
案例
def func():
res = 0
while True:
res += 1
yield res
g = func()
for i in g:
print(i)
总结迭代器的优缺点
优点:
1, 是一种通用的迭代取值方案
2, 惰性计算, 节省内存
缺点:
1, 取值不如索引, key的取值方式灵活
2, 取值是一次性的, 只能往后取, 不能预估值得个数
案例:
def my_range(start, stop, step=1):
while start < stop:
yield start
start += stop
for i in my_range(1, 5, 2):
print(i)
生成式:
列表生成式
l = [i ** 2 for i in range(5) if i > 2]
print(l)
names = [‘lqz_sb‘, ‘yj_sb‘, ‘jason_sb‘, ‘egon‘]
l = [name for name in names if name.endswith("sb")]
print(l)
集合生成式
res = {i for i in range(3)}
print(res)
字典生成式
res = {f"k{i}": i ** 2 for i in range(5)}
print(res)
生成器表达式
res(i for i in range(5))
print(res, type(res))
nums = (i for i in range(200000))
res = sum(nums)
print(res)
with open("a.txt", mode=‘rt‘, encoding=‘utf-8‘)as f:
# data = f.read()
# print(len(data))
# res = 0
# for line in f:
# res += len(line)
# res = sum(len(line) for line in f)
res = sum(len(line) for line in f)
print(res)
内置函数
print(abs(-7)) #abs数值取正
print(all([True,11,0]))
print(all[])#all不能空,其次是判定内部数据是否全部为真
print(any([True,False,0]))
print(any([]))#any一样不能取空,其次与or一样的意思只需其中一个值为真就会是True
print(callable(len))#callable指这个函数是否能用
print(chr(90))
print(ord(‘z‘))#chr 和 ord相互翻译例如90的代码是z,z的实体数据是90
print(divmod(10,3))
divmod指除法,结果以括号形式表现
l = [1,2,3]
print(dir(l))
dir表示这个列表能用哪一些内置函数
res = eval(‘{‘k1‘:111}
‘)
print(res[‘k1‘])#将以文件数据类型的方式写入文件,多行可以用换行符
以上是关于迭代器的主要内容,如果未能解决你的问题,请参考以下文章