MapReduce之自定义分区器Partitioner

Posted sunbr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce之自定义分区器Partitioner相关的知识,希望对你有一定的参考价值。

@

问题引出

要求将统计结果按照条件输出到不同文件中(分区)。

比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

默认Partitioner分区

public class HashPartitioner<K,V> extends Partitioner<K,V>{
	public int getPartition(K key,V value, int numReduceTasks){
		return (key.hashCode() & Integer.MAX VALUE) & numReduceTasks;
	}
}
  • 默认分区是根据keyhashCodeReduceTasks个数取模得到的。
  • 用户没法控制哪个key存储到哪个分区。

自定义Partitioner步骤

  1. 自定义类继承Partitioner,重写getPartition()方法
public class CustomPartitioner extends Partitioner<Text,FlowBea>{
	@Override 
	public int getPartition(Text key,FlowBean value,int numPartitions){
		//控制分区代码逻辑
		……
		return partition;
	}
}
  1. 在Job驱动类中,设置自定义Partitioner
job.setPartitionerClass(CustomPartitioner.class)
  1. 自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask
 job.setNumReduceTask(5);//假设需要分5个区

Partition分区案例实操

将统计结果按照手机归属地不同省份输出到不同文件中(分区)

输入数据:
技术图片

期望输出数据:
手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。所以总共分为5个文件,也就是五个区。

相比于之前的自定义flowbean,这次自定义分区,只需要多编写一个分区器,以及在job驱动类中设置分区器,mapper和reducer类不改变

MyPartitioner.java

/*
 * KEY, VALUE: Mapper输出的Key-value类型
 */
public class MyPartitioner extends Partitioner<Text, FlowBean>{

	// 计算分区  numPartitions为总的分区数,reduceTask的数量
	// 分区号必须为int型的值,且必须符合 0<= partitionNum < numPartitions
	@Override
	public int getPartition(Text key, FlowBean value, int numPartitions) {
		
		String suffix = key.toString().substring(0, 3);//前开后闭,取手机号前三位数
		
		int partitionNum=0;//分区编号
		
		
		switch (suffix) {
		case "136":
			partitionNum=numPartitions-1;//由于分区编号不能大于分区总数,所以用这种方法比较好
			break;
		case "137":
			partitionNum=numPartitions-2;
			break;
		case "138":
			partitionNum=numPartitions-3;
			break;
		case "139":
			partitionNum=numPartitions-4;
			break;

		default:
			break;
		}

		return partitionNum;
	}

}

FlowBeanDriver.java

public class FlowBeanDriver {
	
	public static void main(String[] args) throws Exception {
		
		Path inputPath=new Path("e:/mrinput/flowbean");
		Path outputPath=new Path("e:/mroutput/partitionflowbean");
		
		//作为整个Job的配置
		Configuration conf = new Configuration();
		
		//保证输出目录不存在
		FileSystem fs=FileSystem.get(conf);
		
		if (fs.exists(outputPath)) {
			fs.delete(outputPath, true);
		}
		
		// ①创建Job
		Job job = Job.getInstance(conf);
		
		// ②设置Job
		// 设置Job运行的Mapper,Reducer类型,Mapper,Reducer输出的key-value类型
		job.setMapperClass(FlowBeanMapper.class);
		job.setReducerClass(FlowBeanReducer.class);
		
		// Job需要根据Mapper和Reducer输出的Key-value类型准备序列化器,通过序列化器对输出的key-value进行序列化和反序列化
		// 如果Mapper和Reducer输出的Key-value类型一致,直接设置Job最终的输出类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		// 设置输入目录和输出目录
		FileInputFormat.setInputPaths(job, inputPath);
		FileOutputFormat.setOutputPath(job, outputPath);
		
		// 设置ReduceTask的数量为5
		job.setNumReduceTasks(5);
		
		// 设置使用自定义的分区器
		job.setPartitionerClass(MyPartitioner.class);
		
		// ③运行Job
		job.waitForCompletion(true);
		
	}
}

FlowBeanMapper.java

/*
 * 1. 统计手机号(String)的上行(long,int),下行(long,int),总流量(long,int)
 * 
 * 手机号为key,Bean{上行(long,int),下行(long,int),总流量(long,int)}为value
 * 		
 * 
 * 
 * 
 */
public class FlowBeanMapper extends Mapper<LongWritable, Text, Text, FlowBean>{
	
	private Text out_key=new Text();
	private FlowBean out_value=new FlowBean();
	
	// (0,1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200)
	@Override
	protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context)
			throws IOException, InterruptedException {
		
		String[] words = value.toString().split("	");
		
		//封装手机号
		out_key.set(words[1]);
		// 封装上行
		out_value.setUpFlow(Long.parseLong(words[words.length-3]));
		// 封装下行
		out_value.setDownFlow(Long.parseLong(words[words.length-2]));

		context.write(out_key, out_value);
	}
}

FlowBeanReducer.java

public class FlowBeanReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
	
	private FlowBean out_value=new FlowBean();
	
	@Override
	protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context)
			throws IOException, InterruptedException {
		
		long sumUpFlow=0;
		long sumDownFlow=0;
		
		for (FlowBean flowBean : values) {
			
			sumUpFlow+=flowBean.getUpFlow();
			sumDownFlow+=flowBean.getDownFlow();
			
		}
		
		out_value.setUpFlow(sumUpFlow);
		out_value.setDownFlow(sumDownFlow);
		out_value.setSumFlow(sumDownFlow+sumUpFlow);
		
		context.write(key, out_value);
		
	}
}

FlowBean.java

public class FlowBean implements Writable{
	
	private long upFlow;
	private long downFlow;
	private long sumFlow;
	
	public FlowBean() {
		
	}

	public long getUpFlow() {
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
		return downFlow;
	}

	public void setDownFlow(long downFlow) {
		this.downFlow = downFlow;
	}

	public long getSumFlow() {
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}

	// 序列化   在写出属性时,如果为引用数据类型,属性不能为null
	@Override
	public void write(DataOutput out) throws IOException {
		
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
		
		
	}

	//反序列化   序列化和反序列化的顺序要一致
	@Override
	public void readFields(DataInput in) throws IOException {
		upFlow=in.readLong();
		downFlow=in.readLong();
		sumFlow=in.readLong();
		
	}

	@Override
	public String toString() {
		return  upFlow + "	" + downFlow + "	" + sumFlow;
	}
}

输出结果:
总共五个文件
技术图片
一号区:
技术图片
二号区:
技术图片
三号区:
技术图片

四号区:
技术图片

其他号码为第五号区:
技术图片

分区总结

  • 如果ReduceTask的数量 > getPartition的结果数,则会多产生几个空的输出文件part-r-000xx
  • 如果Reduceask的数量 < getPartition的结果数,则有一部分分区数据无处安放,会Exception
  • 如果ReduceTask的数量 = 1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask,最终也就只会产生一个结果文件partr-00000

以刚才的案例分析:
例如:假设自定义分区数为5,则

  • job.setlNlurmReduce Task(1);会正常运行,只不过会产生一个输出文件
  • job.setlNlunReduce Task(2),会报错
  • job.setNumReduceTasks(6);大于5,程序会正常运行,会产生空文件













以上是关于MapReduce之自定义分区器Partitioner的主要内容,如果未能解决你的问题,请参考以下文章

hadoop MapReduce自定义分区Partition输出各运营商的手机号码

大数据之Hadoop(MapReduce):Shuffle之Partition分区

未调用 hadoop mapreduce 分区程序

大数据之Hadoop(MapReduce):Partition分区案例实操

MapReduce 框架原理MapReduce 工作流程 & Shuffle 机制

[MapReduce_8] MapReduce 中的自定义分区实现