高性能异步爬虫

Posted duhong0520

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高性能异步爬虫相关的知识,希望对你有一定的参考价值。

引入

很多同学对于异步这个概念只是停留在了“听说很NB”的认知层面上,很少有人能够在项目中真正的使用异步实现高性能的相关操作。本节课,咱们就一起来学习一下,爬虫中如何使用异步实现高性能的数据爬取操作。

背景

其实爬虫的本质就是client发请求批量获取server的响应数据,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低。需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,是因为爬虫任务是明显的IO密集型(阻塞)程序。那么该如何提高爬取性能呢?

分析处理

  - 同步调用:即提交一个任务后就在原地等待任务结束,等到拿到任务的结果后再继续下一行代码,效率低下

技术图片
import requests

def parse_page(res):
    print(解析 %s %(len(res)))

def get_page(url):
    print(下载 %s %url)
    response=requests.get(url)
    if response.status_code == 200:
        return response.text

urls=[https://www.baidu.com/,http://www.sina.com.cn/,https://www.python.org]
for url in urls:
    res=get_page(url) #调用一个任务,就在原地等待任务结束拿到结果后才继续往后执行
    parse_page(res)
技术图片

  - a. 解决同步调用方案之多线程/多进程

    • 好处:在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。
    •  弊端:开启多进程或都线程的方式,我们是无法无限制地开启多进程或多线程的:在遇到要同时响应成百上千路的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态。

  - b. 解决同步调用方案之线程/进程池

    • 好处:很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。可以很好的降低系统开销。
    • 弊端:“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且,所谓“池”始终有其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池的时候效果好多少。所以使用“池”必须考虑其面临的响应规模,并根据响应规模调整“池”的大小。
    • 案例:基于multiprocessing.dummy线程池爬取梨视频的视频信息
技术图片
import requests
import random
from lxml import etree
import re
from fake_useragent import UserAgent
#安装fake-useragent库:pip install fake-useragent
#导入线程池模块
from multiprocessing.dummy import Pool
#实例化线程池对象
pool = Pool()
url = http://www.pearvideo.com/category_1
#随机产生UA
ua = UserAgent().random
headers = {
    User-Agent:ua
}
#获取首页页面数据
page_text = requests.get(url=url,headers=headers).text
#对获取的首页页面数据中的相关视频详情链接进行解析
tree = etree.html(page_text)
li_list = tree.xpath(//div[@id="listvideoList"]/ul/li)

detail_urls = []#存储二级页面的url
for li in li_list:
    detail_url = http://www.pearvideo.com/+li.xpath(./div/a/@href)[0]
    title = li.xpath(.//div[@class="vervideo-title"]/text())[0]
    detail_urls.append(detail_url)
    
vedio_urls = []#存储视频的url
for url in detail_urls:
    page_text = requests.get(url=url,headers=headers).text
    vedio_url = re.findall(srcUrl="(.*?)",page_text,re.S)[0]
    vedio_urls.append(vedio_url) 
#使用线程池进行视频数据下载    
func_request = lambda link:requests.get(url=link,headers=headers).content
video_data_list = pool.map(func_request,vedio_urls)
#使用线程池进行视频数据保存
func_saveData = lambda data:save(data)
pool.map(func_saveData,video_data_list)
def save(data):
    fileName = str(random.randint(1,10000))+.mp4
    with open(fileName,wb) as fp:
        fp.write(data)
        print(fileName+已存储)
        
pool.close()
pool.join()
技术图片

  - 总结:对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

终极处理方案

- 上述无论哪种解决方案其实没有解决一个性能相关的问题:IO阻塞,无论是多进程还是多线程,在遇到IO阻塞时都会被操作系统强行剥夺走CPU的执行权限,程序的执行效率因此就降低了下来。

- 解决这一问题的关键在于,我们自己从应用程序级别检测IO阻塞然后切换到我们自己程序的其他任务执行,这样把我们程序的IO降到最低,我们的程序处于就绪态就会增多,以此来迷惑操作系统,操作系统便以为我们的程序是IO比较少的程序,从而会尽可能多的分配CPU给我们,这样也就达到了提升程序执行效率的目的。

- 在python3.4之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO【HTTP连接就是网络IO操作】),实现应用程序级别的切换(异步IO)。注意:asyncio只能发tcp级别的请求,不能发http协议。

  - 异步IO:所谓「异步 IO」,就是你发起一个 网络IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知。

  - 实现方式:单线程+协程实现异步IO操作。

- 异步协程用法

接下来让我们来了解下协程的实现,从 Python 3.4 开始,Python 中加入了协程的概念,但这个版本的协程还是以生成器对象为基础的,在 Python 3.5 则增加了 async/await,使得协程的实现更加方便。首先我们需要了解下面几个概念:

 

  • event_loop:事件循环,相当于一个无限循环,我们可以把一些函数注册到这个事件循环上,当满足条件发生的时候,就会调用对应的处理方法。

  • coroutine:中文翻译叫协程,在 Python 中常指代为协程对象类型,我们可以将协程对象注册到时间循环中,它会被事件循环调用。我们可以使用 async 关键字来定义一个方法,这个方法在调用时不会立即被执行,而是返回一个协程对象。

  • task:任务,它是对协程对象的进一步封装,包含了任务的各个状态。

  • future:代表将来执行或没有执行的任务的结果,实际上和 task 没有本质区别。

另外我们还需要了解 async/await 关键字,它是从 Python 3.5 才出现的,专门用于定义协程。其中,async 定义一个协程,await 用来挂起阻塞方法的执行。

  - 定义一个协程

技术图片
import asyncio
 
async def execute(x):
    print(Number:, x)
 
coroutine = execute(1)
print(Coroutine:, coroutine)
print(After calling execute)
 
loop = asyncio.get_event_loop()
loop.run_until_complete(coroutine)
print(After calling loop)
技术图片

运行结果:

Coroutine: <coroutine object execute at 0x1034cf830>
After calling execute
Number: 1
After calling loop

首先我们引入了 asyncio 这个包,这样我们才可以使用 async 和 await,然后我们使用 async 定义了一个 execute() 方法,方法接收一个数字参数,方法执行之后会打印这个数字。

随后我们直接调用了这个方法,然而这个方法并没有执行,而是返回了一个 coroutine 协程对象。随后我们使用 get_event_loop() 方法创建了一个事件循环 loop,并调用了 loop 对象的 run_until_complete() 方法将协程注册到事件循环 loop 中,然后启动。最后我们才看到了 execute() 方法打印了输出结果。

可见,async 定义的方法就会变成一个无法直接执行的 coroutine 对象,必须将其注册到事件循环中才可以执行。

上文我们还提到了 task,它是对 coroutine 对象的进一步封装,它里面相比 coroutine 对象多了运行状态,比如 running、finished 等,我们可以用这些状态来获取协程对象的执行情况。

在上面的例子中,当我们将 coroutine 对象传递给 run_until_complete() 方法的时候,实际上它进行了一个操作就是将 coroutine 封装成了 task 对象,我们也可以显式地进行声明,如下所示:

技术图片
import asyncio
 
async def execute(x):
    print(Number:, x)
    return x
 
coroutine = execute(1)
print(Coroutine:, coroutine)
print(After calling execute)
 
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(Task:, task)
loop.run_until_complete(task)
print(Task:, task)
print(After calling loop)
技术图片

运行结果:

技术图片
Coroutine: <coroutine object execute at 0x10e0f7830>
After calling execute
Task: <Task pending coro=<execute() running at demo.py:4>>
Number: 1
Task: <Task finished coro=<execute() done, defined at demo.py:4> result=1>
After calling loop
技术图片

这里我们定义了 loop 对象之后,接着调用了它的 create_task() 方法将 coroutine 对象转化为了 task 对象,随后我们打印输出一下,发现它是 pending 状态。接着我们将 task 对象添加到事件循环中得到执行,随后我们再打印输出一下 task 对象,发现它的状态就变成了 finished,同时还可以看到其 result 变成了 1,也就是我们定义的 execute() 方法的返回结果。

另外定义 task 对象还有一种方式,就是直接通过 asyncio 的 ensure_future() 方法,返回结果也是 task 对象,这样的话我们就可以不借助于 loop 来定义,即使我们还没有声明 loop 也可以提前定义好 task 对象,写法如下:

技术图片
import asyncio
 
async def execute(x):
    print(Number:, x)
    return x
 
coroutine = execute(1)
print(Coroutine:, coroutine)
print(After calling execute)
 
task = asyncio.ensure_future(coroutine)
print(Task:, task)
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(Task:, task)
print(After calling loop)
技术图片

  - 绑定回调:也可以为某个 task 绑定一个回调方法,来看下面的例子:

技术图片
import asyncio
import requests
 
async def request():
    url https://www.baidu.com
    status = requests.get(url).status_code
    return status
 
def callback(task):
    print(Status:, task.result())
 
coroutine = request()
task = asyncio.ensure_future(coroutine)
task.add_done_callback(callback)
print(Task:, task)
 
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(Task:, task)
技术图片

在这里我们定义了一个 request() 方法,请求了百度,返回状态码,但是这个方法里面我们没有任何 print() 语句。随后我们定义了一个 callback() 方法,这个方法接收一个参数,是 task 对象,然后调用 print() 方法打印了 task 对象的结果。这样我们就定义好了一个 coroutine 对象和一个回调方法,我们现在希望的效果是,当 coroutine 对象执行完毕之后,就去执行声明的 callback() 方法。

那么它们二者怎样关联起来呢?很简单,只需要调用 add_done_callback() 方法即可,我们将 callback() 方法传递给了封装好的 task 对象,这样当 task 执行完毕之后就可以调用 callback() 方法了,同时 task 对象还会作为参数传递给 callback() 方法,调用 task 对象的 result() 方法就可以获取返回结果了。

运行结果:

Task: <Task pending coro=<request() running at demo.py:5> cb=[callback() at demo.py:11]>
Status: <Response [200]>
Task: <Task finished coro=<request() done, defined at demo.py:5> result=<Response [200]>>

实际上不用回调方法,直接在 task 运行完毕之后也可以直接调用 result() 方法获取结果,运行结果是一样的。如下所示:

技术图片
import asyncio
import requests
 
async def request():
    url https://www.baidu.com
    status = requests.get(url).status_code
    return status
 
coroutine = request()
task = asyncio.ensure_future(coroutine)
print(Task:, task)
 
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print(Task:, task)
print(Task Result:, task.result())
技术图片

  - 多任务协程:上面的例子我们只执行了一次请求,如果我们想执行多次请求应该怎么办呢?我们可以定义一个 task 列表,然后使用 asyncio 的 wait() 方法即可执行。

技术图片
import asyncio
import requests
 
async def request():
    url https://www.baidu.com
    status = requests.get(url).status_code
    return status
 
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
print(Tasks:, tasks)
 
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
 
for task in tasks:
    print(Task Result:, task.result())
技术图片

这里我们使用一个 for 循环创建了五个 task,组成了一个列表,然后把这个列表首先传递给了 asyncio 的 wait() 方法,然后再将其注册到时间循环中,就可以发起五个任务了。最后我们再将任务的运行结果输出出来,运行结果如下:

技术图片
Tasks: [<Task pending coro=<request() running at demo.py:5>>, <Task pending coro=<request() running at demo.py:5>>, <Task pending coro=<request() running at demo.py:5>>, <Task pending coro=<request() running at demo.py:5>>, <Task pending coro=<request() running at demo.py:5>>]
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
技术图片

   - 协程实现:前面说了这么一通,又是 async,又是 coroutine,又是 task,又是 callback,但似乎并没有看出协程的优势啊?反而写法上更加奇怪和麻烦了,别急,上面的案例只是为后面的使用作铺垫,接下来我们正式来看下协程在解决 IO 密集型任务上有怎样的优势吧!

  为了表现出协程的优势,我们需要先创建一个合适的实验环境,最好的方法就是模拟一个需要等待一定时间才可以获取返回结果的网页,上面的代码中使用了百度,但百度的响应太快了,而且响应速度也会受本机网速影响,所以最好的方式是自己在本地模拟一个慢速服务器,这里我们选用 Flask。

然后编写服务器代码如下:

技术图片
from flask import Flask
import time
 
app = Flask(__name__)
 
@app.route(/)
def index():
    time.sleep(3)
    return Hello!
 
if __name__ == __main__:
    app.run(threaded=True)#这表明 Flask 启动了多线程模式,不然默认是只有一个线程的。
技术图片

接下来我们再重新使用上面的方法请求一遍:

技术图片
import asyncio
import requests
import time
 
start = time.time()
 
async def request():
    url http://127.0.0.1:5000
    print(Waiting for, url)
    response = requests.get(url)
    print(Get response from, url, Result:, response.text)
 
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
 
end = time.time()
print(Cost time:, end - start)
技术图片

在这里我们还是创建了五个 task,然后将 task 列表传给 wait() 方法并注册到时间循环中执行。

运行结果如下:

技术图片
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Cost time: 15.049368143081665
技术图片

可以发现和正常的请求并没有什么两样,依然还是顺次执行的,耗时 15 秒,平均一个请求耗时 3 秒,说好的异步处理呢?

其实,要实现异步处理,我们得先要有挂起的操作,当一个任务需要等待 IO 结果的时候,可以挂起当前任务,转而去执行其他任务,这样我们才能充分利用好资源,上面方法都是一本正经的串行走下来,连个挂起都没有,怎么可能实现异步?

要实现异步,接下来我们再了解一下 await 的用法,使用 await 可以将耗时等待的操作挂起,让出控制权。当协程执行的时候遇到 await,时间循环就会将本协程挂起,转而去执行别的协程,直到其他的协程挂起或执行完毕。

所以,我们可能会将代码中的 request() 方法改成如下的样子:

async def request():
    url http://127.0.0.1:5000
    print(Waiting for, url)
    response = await requests.get(url)
    print(Get response from, url, Result:, response.text)

仅仅是在 requests 前面加了一个 await,然而执行以下代码,会得到如下报错:

技术图片
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Cost time: 15.048935890197754
Task exception was never retrieved
future: <Task finished coro=<request() done, defined at demo.py:7> exception=TypeError("object Response can‘t be used in ‘await‘ expression",)>
Traceback (most recent call last):
  File "demo.py", line 10, in request
    status = await requests.get(url)
TypeError: object Response cant be used in await expression
技术图片

这次它遇到 await 方法确实挂起了,也等待了,但是最后却报了这么个错,这个错误的意思是 requests 返回的 Response 对象不能和 await 一起使用,为什么呢?因为根据官方文档说明,await 后面的对象必须是如下格式之一:

  • A native coroutine object returned from a native coroutine function,一个原生 coroutine 对象。

  • A generator-based coroutine object returned from a function decorated with types.coroutine(),一个由 types.coroutine() 修饰的生成器,这个生成器可以返回 coroutine 对象。

  • An object with an await__ method returning an iterator,一个包含 __await 方法的对象返回的一个迭代器。

reqeusts 返回的 Response 不符合上面任一条件,因此就会报上面的错误了。

那么有的小伙伴就发现了,既然 await 后面可以跟一个 coroutine 对象,那么我用 async 把请求的方法改成 coroutine 对象不就可以了吗?所以就改写成如下的样子:

技术图片
import asyncio
import requests
import time
 
start = time.time()
 
async def get(url):
    return requests.get(url)
 
async def request():
    url http://127.0.0.1:5000
    print(Waiting for, url)
    response = await get(url)
    print(Get response from, url, Result:, response.text)
 
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
 
end = time.time()
print(Cost time:, end - start)
技术图片

这里我们将请求页面的方法独立出来,并用 async 修饰,这样就得到了一个 coroutine 对象,我们运行一下看看:

技术图片
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Cost time: 15.134317874908447
技术图片

还是不行,它还不是异步执行,也就是说我们仅仅将涉及 IO 操作的代码封装到 async 修饰的方法里面是不可行的!我们必须要使用支持异步操作的请求方式才可以实现真正的异步,所以这里就需要 aiohttp 派上用场了。

  - 使用aiohttp

    - 环境安装:pip install aiohttp

    - 下面我们将 aiohttp 用上来,将代码改成如下样子:

技术图片
import asyncio
import aiohttp
import time
 
start = time.time()
 
async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    result = await response.text()
    session.close()
    return result
 
async def request():
    url http://127.0.0.1:5000
    print(Waiting for, url)
    result = await get(url)
    print(Get response from, url, Result:, result)
 
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
 
end = time.time()
print(Cost time:, end - start)
技术图片

在这里我们将请求库由 requests 改成了 aiohttp,通过 aiohttp 的 ClientSession 类的 get() 方法进行请求,结果如下:

技术图片
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Waiting for http://127.0.0.1:5000
Get response from http://127.0.0.1:5000 Result: Hello!
Get response from http://127.0.0.1:5000 Result: Hello!
Get response from http://127.0.0.1:5000 Result: Hello!
Get response from http://127.0.0.1:5000 Result: Hello!
Get response from http://127.0.0.1:5000 Result: Hello!
Cost time: 3.0199508666992188
技术图片

成功了!我们发现这次请求的耗时由 15 秒变成了 3 秒,耗时直接变成了原来的 1/5。

代码里面我们使用了 await,后面跟了 get() 方法,在执行这五个协程的时候,如果遇到了 await,那么就会将当前协程挂起,转而去执行其他的协程,直到其他的协程也挂起或执行完毕,再进行下一个协程的执行。

开始运行时,时间循环会运行第一个 task,针对第一个 task 来说,当执行到第一个 await 跟着的 get() 方法时,它被挂起,但这个 get() 方法第一步的执行是非阻塞的,挂起之后立马被唤醒,所以立即又进入执行,创建了 ClientSession 对象,接着遇到了第二个 await,调用了 session.get() 请求方法,然后就被挂起了,由于请求需要耗时很久,所以一直没有被唤醒,好第一个 task 被挂起了,那接下来该怎么办呢?事件循环会寻找当前未被挂起的协程继续执行,于是就转而执行第二个 task 了,也是一样的流程操作,直到执行了第五个 task 的 session.get() 方法之后,全部的 task 都被挂起了。所有 task 都已经处于挂起状态,那咋办?只好等待了。3 秒之后,几个请求几乎同时都有了响应,然后几个 task 也被唤醒接着执行,输出请求结果,最后耗时,3 秒!

怎么样?这就是异步操作的便捷之处,当遇到阻塞式操作时,任务被挂起,程序接着去执行其他的任务,而不是傻傻地等着,这样可以充分利用 CPU 时间,而不必把时间浪费在等待 IO 上。

有人就会说了,既然这样的话,在上面的例子中,在发出网络请求后,既然接下来的 3 秒都是在等待的,在 3 秒之内,CPU 可以处理的 task 数量远不止这些,那么岂不是我们放 10 个、20 个、50 个、100 个、1000 个 task 一起执行,最后得到所有结果的耗时不都是 3 秒左右吗?因为这几个任务被挂起后都是一起等待的。

理论来说确实是这样的,不过有个前提,那就是服务器在同一时刻接受无限次请求都能保证正常返回结果,也就是服务器无限抗压,另外还要忽略 IO 传输时延,确实可以做到无限 task 一起执行且在预想时间内得到结果。

我们这里将 task 数量设置成 100,再试一下:

tasks = [asyncio.ensure_future(request()) for _ in range(100)]

耗时结果如下:

Cost time: 3.106252670288086

最后运行时间也是在 3 秒左右,当然多出来的时间就是 IO 时延了。

可见,使用了异步协程之后,我们几乎可以在相同的时间内实现成百上千倍次的网络请求,把这个运用在爬虫中,速度提升可谓是非常可观了。

  - 与多进程结合

在最新的 PyCon 2018 上,来自 Facebook 的 John Reese 介绍了 asyncio 和 multiprocessing 各自的特点,并开发了一个新的库,叫做 aiomultiprocess,感兴趣的可以了解下:https://www.youtube.com/watch?v=0kXaLh8Fz3k。

这个库的安装方式是:pip install aiomultiprocess

需要 Python 3.6 及更高版本才可使用。

使用这个库,我们可以将上面的例子改写如下:

技术图片
import asyncio
import aiohttp
import time
from aiomultiprocess import Pool
 
start = time.time()
 
async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    result = await response.text()
    session.close()
    return result
 
async def request():
    url http://127.0.0.1:5000
    urls = [url for _ in range(100)]
    async with Pool() as pool:
        result = await pool.map(get, urls)
        return result
 
coroutine = request()
task = asyncio.ensure_future(coroutine)
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
 
end = time.time()
print(Cost time:, end - start)
技术图片

这样就会同时使用多进程和异步协程进行请求,当然最后的结果其实和异步是差不多的:

Cost time: 3.1156570434570312

因为我的测试接口的原因,最快的响应也是 3 秒,所以这部分多余的时间基本都是 IO 传输时延。但在真实情况下,我们在做爬取的时候遇到的情况千变万化,一方面我们使用异步协程来防止阻塞,另一方面我们使用 multiprocessing 来利用多核成倍加速,节省时间其实还是非常可观的。

 

 

 

 

 

参考来源:https://blog.csdn.net/zhusongziye/article/details/81637088

  

以上是关于高性能异步爬虫的主要内容,如果未能解决你的问题,请参考以下文章

高性能异步爬虫概述

爬虫-高性能异步爬虫

高性能异步爬虫

高性能异步爬虫

异步高性能爬虫

高性能异步爬虫