Luogu P5960 模板差分约束算法

Posted mogeko

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Luogu P5960 模板差分约束算法相关的知识,希望对你有一定的参考价值。

gate

差分约束系统用来解决:
给出(n)个变量(x_1...x_n)(m)个形如(x_i-x_j le k)(k)为任意常量)的式子,
(x_1...x_n)的一组可行解。

将式子变形为(x_ile x_j + k),发现刚好符合三角形不等式(dis[v]le dis[u]+w[i])的形式。
对于每个式子,连边(x_j ightarrow x_i),权值为(k)(0)号节点向每个节点连边,权值为(0)
转化为求单源最短路,(dis[1]...dis[n])即为解。
由于可能出现负权边,用(SPFA)求解。若出现负环,则无解。

对于一些其他形式的式子,需要稍作转化:
(x_i-x_j ge k) 将两边同时乘(-1),将不等号反转。
(x_i-x_j = k) 拆成两个式子(x_i-x_j le k)(x_i-x_j ge k)

(code)

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#define MogeKo qwq
using namespace std;

const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;

int n,m,x,y,z,cnt;
int head[maxn],to[maxn],nxt[maxn],w[maxn];
int dis[maxn],num[maxn];
bool vis[maxn];

void add(int x,int y,int z) {
	to[++cnt] = y;
	nxt[cnt] = head[x];
	head[x] = cnt;
	w[cnt] = z;
}

bool SPFA(int s) {
	memset(dis,INF,sizeof(dis));
	queue <int> q;
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while(!q.empty()) {
		int u = q.front();
		q.pop();
		vis[u] = false;
		for(int i = head[u]; i; i = nxt[i]) {
			int v = to[i];
			if(dis[v] <= dis[u] + w[i]) continue;
			dis[v] = dis[u] + w[i];
			if(!vis[v]) {
				if(++num[v] == n) return false;
				vis[v] = true;
				q.push(v);
			}
		}
	}
	return true;
}

int main() {
	scanf("%d%d",&n,&m);
	for(int i = 1; i <= m; i++) {
		scanf("%d%d%d",&x,&y,&z);
		add(y,x,z);
	}
	for(int i = 1; i <= n; i++)
		add(0,i,0);
	if(!SPFA(0)) printf("NO");
	else
		for(int i = 1; i <= n; i++)
			printf("%d ",dis[i]);
	return 0;
}







以上是关于Luogu P5960 模板差分约束算法的主要内容,如果未能解决你的问题,请参考以下文章

Luogu 1993差分约束系统问题——小K的农场

Luogu P3275 [SCOI2011]糖果

[luogu2474 SCOI2008]天平(floyd差分约束)

Luogu4926 倍杀测量者(二分答案+差分约束)

题解Luogu P3275 [SCOI2011] 糖果 差分约束

Luogu1993 小K的农场 (差分约束)