Repeats SPOJ - REPEATS (AC自动机 + RMQ)
Posted pccccc
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Repeats SPOJ - REPEATS (AC自动机 + RMQ)相关的知识,希望对你有一定的参考价值。
A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed string t with length l>=1. For example, the string
s = abaabaabaaba
is a (4,3)-repeat with t = aba as its seed string. That is, the seed string t is 3 characters long, and the whole string s is obtained by repeating t 4 times.
Write a program for the following task: Your program is given a long string u consisting of characters ‘a’ and/or ‘b’ as input. Your program must find some (k,l)-repeat that occurs as substring within u with k as large as possible. For example, the input string
u = babbabaabaabaabab
contains the underlined (4,3)-repeat s starting at position 5. Since u contains no other contiguous substring with more than 4 repeats, your program must output the maximum k.
Input
In the first line of the input contains H- the number of test cases (H <= 20). H test cases follow. First line of each test cases is n - length of the input string (n <= 50000), The next n lines contain the input string, one character (either ‘a’ or ‘b’) per line, in order.
Output
For each test cases, you should write exactly one interger k in a line - the repeat count that is maximized.
Example
Input:
1
17
b
a
b
b
a
b
a
a
b
a
a
b
a
a
b
a
b
Output:
4
思路:根据罗穗骞论文,若循环节的长度为len且循环次数大于1, 则1, 1 + len, 1 + 2 * len, 1 + 3 * len......中某相邻的两个字符必然是所求字符串中的两个字符,然后我们来看suffix[i] 和 suffix[i + len] 的最长公共前缀 LCP(i, i + len) = k, 定义 le = i, ri = i + len + k - 1, 可以发现,k 类似于KMP中的 next[n] (不懂得可以去看一下KMP求最小循环节), 所以 le ~ ri 的循环节个数至少为 k / len + 1, 然后就是向左匹配操作了。
关于求任意的 LCP(i, j) 的 ,其实就是求 min(Height[(rank[i] + 1) ~ rank[j]), 这里默认rank[i] < rank[j]。
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <math.h>
#include <string.h>
#include <map>
#include <iostream>
using namespace std;
const int maxn = 5e5 + 50;
const int mod = 20090717;
int INF = 1e9;
typedef pair<int, int> pii;
#define fi first
#define se second
int Sa[maxn], Height[maxn], Tax[maxn], Rank[maxn], tp[maxn], a[maxn], n, m;
char str[maxn];
void Rsort(){
for(int i = 0; i <= m; i++) Tax[i] = 0;
for(int i = 1; i <= n; i++) Tax[Rank[tp[i]]]++;
for(int i = 1; i <= m; i++) Tax[i] += Tax[i - 1];
for(int i = n; i >= 1; i--) Sa[Tax[Rank[tp[i]]]--] = tp[i];
}
int cmp(int *f, int x, int y, int w){
if(x + w > n || y + w > n) return 0; // 注意防止越界,多组输入的时候这条必须有
return f[x] == f[y] && f[x + w] == f[y + w];
}
void Suffix(){
for(int i = 1; i <= n; i++) Rank[i] = a[i], tp[i] = i;
m = 200, Rsort();
for(int w = 1, p = 1, i; p < n; w += w, m = p){
for(p = 0, i = n - w + 1; i <= n; i++) tp[++p] = i;
for(i = 1; i <= n; i++) if(Sa[i] > w) tp[++p] = Sa[i] - w;
Rsort(), swap(Rank, tp), Rank[Sa[1]] = p = 1;
for(int i = 2; i <= n; i++) Rank[Sa[i]] = cmp(tp, Sa[i], Sa[i - 1], w) ? p : ++p;
}
int j, k = 0;
for(int i = 1; i <= n; Height[Rank[i++]] = k){
for(k = k ? k - 1 : k, j = Sa[Rank[i] - 1]; a[i + k] == a[j + k]; ++k);
}
}
int dpmi[maxn][60];
void RMQ(){
for(int i = 1; i <= n; i++){
dpmi[i][0] = Height[i];
}
for(int j = 1; (1 << j) <= n; j++){
for(int i = 1; i + (1 << j) - 1 <= n; i++){
dpmi[i][j] = min(dpmi[i][j - 1], dpmi[i + (1 << (j - 1))][j - 1]);
}
}
}
int QueryMin(int l, int r){
int k = log2(r - l + 1);
return min(dpmi[l][k], dpmi[r - (1 << k) + 1][k]);
}
int QueryLcp(int i, int j){
i = Rank[i], j = Rank[j];
if(i > j) swap(i, j);
i++;
return QueryMin(i, j);
}
int main(int arg, char const *argv[])
{
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
for(int i = 1; i <= n; i++){
char ch;
scanf(" %c", &ch);
a[i] = ch;
}
Suffix();
RMQ();
int ans = 0;
for(int len = 1; len <= n; len++){
for(int i = 1; i + len <= n; i += len){
int res1 = QueryLcp(i, i + len);
int cnt = res1 / len + 1;
int j = i - (len - res1 % len);
if(j > 0){
int res2 = QueryLcp(j, j + len);
if(res2 / len + 1 > cnt) cnt++;
ans = max(ans, cnt);
}
}
}
printf("%d
", ans);
}
return 0;
}
以上是关于Repeats SPOJ - REPEATS (AC自动机 + RMQ)的主要内容,如果未能解决你的问题,请参考以下文章
SPOJ REPEATS - Repeats(后缀数组[重复次数最多的连续重复子串])