09-不可或缺的自定义函数

Posted ting152

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了09-不可或缺的自定义函数相关的知识,希望对你有一定的参考价值。

函数基础

那么,到底什么是函数,如何在Python程序中定义函数呢?

说白了,函数就是为了实现某一功能的代码段,只要写好以后,就可以重复利用。我们先来看下面一个简单的例子:

def my_func(message):
    print(‘Got a message: {}‘.format(message))

# 调用函数 my_func()
my_func(‘Hello World‘)
# 输出
Got a message: Hello World

其中:

  • def是函数的声明;

  • my_func是函数的名称;

  • 括号里面的message则是函数的参数;

  • 而print那行则是函数的主体部分,可以执行相应的语句;

  • 在函数最后,你可以返回调用结果(return或yield),也可以不返回。

总结一下,大概是下面的这种形式:

def name(param1, param2, ..., paramN):
    statements
    return/yield value # optional

和其他需要编译的语言(比如C语言)不一样的是,def是可执行语句,这意味着函数直到被调用前,都是不存在的。当程序调用函数时,def语句才会创建一个新的函数对象,并赋予其名字。

我们一起来看几个例子,加深你对函数的印象:

def my_sum(a, b):
    return a + b

result = my_sum(3, 5)
print(result)

# 输出
8

这里,我们定义了my_sum()这个函数,它有两个参数a和b,作用是相加;随后,调用my_sum()函数,分别把3和5赋于a和b;最后,返回其相加的值,赋于变量result,并输出得到8。

再来看一个例子:

def find_largest_element(l):
    if not isinstance(l, list):
        print(‘input is not type of list‘)
        return
    if len(l) == 0:
        print(‘empty input‘)
        return
    largest_element = l[0]
    for item in l:
        if item > largest_element:
            largest_element = item
    print(‘largest element is: {}‘.format(largest_element)) 
      
find_largest_element([8, 1,-3, 2, 0])

# 输出
largest element is: 8

这个例子中,我们定义了函数find_largest_element,作用是遍历输入的列表,找出最大的值并打印。因此,当我们调用它,并传递列表 [8, 1, -3, 2, 0] 作为参数时,程序就会输出 largest element is: 8

需要注意,主程序调用函数时,必须保证这个函数此前已经定义过,不然就会报错,比如:

my_func(‘hello world‘)
def my_func(message):
    print(‘Got a message: {}‘.format(message))
    
# 输出
NameError: name ‘my_func‘ is not defined

但是,如果我们在函数内部调用其他函数,函数间哪个声明在前、哪个在后就无所谓,因为def是可执行语句,函数在调用之前都不存在,我们只需保证调用时,所需的函数都已经声明定义:

def my_func(message):
    my_sub_func(message) # 调用my_sub_func()在其声明之前不影响程序执行
    
def my_sub_func(message):
    print(‘Got a message: {}‘.format(message))

my_func(‘hello world‘)

# 输出
Got a message: hello world

另外,Python函数的参数可以设定默认值,比如下面这样的写法:

def func(param = 0):
    ...

这样,在调用函数func()时,如果参数param没有传入,则参数默认为0;而如果传入了参数param,其就会覆盖默认值。

前面说过,Python和其他语言相比的一大特点是,Python是dynamically typed的,可以接受任何数据类型(整型,浮点,字符串等等)。对函数参数来说,这一点同样适用。比如还是刚刚的my_sum函数,我们也可以把列表作为参数来传递,表示将两个列表相连接:

print(my_sum([1, 2], [3, 4]))

# 输出
[1, 2, 3, 4]

同样,也可以把字符串作为参数传递,表示字符串的合并拼接:

print(my_sum(‘hello ‘, ‘world‘))

# 输出
hello world

当然,如果两个参数的数据类型不同,比如一个是列表、一个是字符串,两者无法相加,那就会报错:

print(my_sum([1, 2], ‘hello‘))
TypeError: can only concatenate list (not "str") to list

我们可以看到,Python不用考虑输入的数据类型,而是将其交给具体的代码去判断执行,同样的一个函数(比如这边的相加函数my_sum()),可以同时应用在整型、列表、字符串等等的操作中。

在编程语言中,我们把这种行为称为多态。这也是Python和其他语言,比如Java、C等很大的一个不同点。当然,Python这种方便的特性,在实际使用中也会带来诸多问题。因此,必要时请你在开头加上数据的类型检查。

Python函数的另一大特性,是Python支持函数的嵌套。所谓的函数嵌套,就是指函数里面又有函数,比如:

def f1():
    print(‘hello‘)
    def f2():
        print(‘world‘)
    f2()
f1()

# 输出
hello
world

这里函数f1()的内部,又定义了函数f2()。在调用函数f1()时,会先打印字符串‘hello‘,然后f1()内部再调用f2(),打印字符串‘world‘。你也许会问,为什么需要函数嵌套?这样做有什么好处呢?

其实,函数的嵌套,主要有下面两个方面的作用。

第一,函数的嵌套能够保证内部函数的隐私。内部函数只能被外部函数所调用和访问,不会暴露在全局作用域,因此,如果你的函数内部有一些隐私数据(比如数据库的用户、密码等),不想暴露在外,那你就可以使用函数的的嵌套,将其封装在内部函数中,只通过外部函数来访问。比如:

def connect_DB():
    def get_DB_configuration():
        ...
        return host, username, password
    conn = connector.connect(get_DB_configuration())
    return conn

这里的函数get_DB_configuration,便是内部函数,它无法在connect_DB()函数以外被单独调用。也就是说,下面这样的外部直接调用是错误的:

get_DB_configuration()

# 输出
NameError: name ‘get_DB_configuration‘ is not defined

我们只能通过调用外部函数connect_DB()来访问它,这样一来,程序的安全性便有了很大的提高。

第二,合理的使用函数嵌套,能够提高程序的运行效率。我们来看下面这个例子:

def factorial(input):
    # validation check
    if not isinstance(input, int):
        raise Exception(‘input must be an integer.‘)
    if input < 0:
        raise Exception(‘input must be greater or equal to 0‘ )
    ...

    def inner_factorial(input):
        if input <= 1:
            return 1
        return input * inner_factorial(input-1)
    return inner_factorial(input)


print(factorial(5))

这里,我们使用递归的方式计算一个数的阶乘。因为在计算之前,需要检查输入是否合法,所以我写成了函数嵌套的形式,这样一来,输入是否合法就只用检查一次。而如果我们不使用函数嵌套,那么每调用一次递归便会检查一次,这是没有必要的,也会降低程序的运行效率。

实际工作中,如果你遇到相似的情况,输入检查不是很快,还会耗费一定的资源,那么运用函数的嵌套就十分必要了。

函数变量作用域

Python函数中变量的作用域和其他语言类似。如果变量是在函数内部定义的,就称为局部变量,只在函数内部有效。一旦函数执行完毕,局部变量就会被回收,无法访问,比如下面的例子:

def read_text_from_file(file_path):
    with open(file_path) as file:
        ...

我们在函数内部定义了file这个变量,这个变量只在read_text_from_file这个函数里有效,在函数外部则无法访问。

相对应的,全局变量则是定义在整个文件层次上的,比如下面这段代码:

MIN_VALUE = 1
MAX_VALUE = 10
def validation_check(value):
    if value < MIN_VALUE or value > MAX_VALUE:
        raise Exception(‘validation check fails‘)

这里的MIN_VALUE和MAX_VALUE就是全局变量,可以在文件内的任何地方被访问,当然在函数内部也是可以的。不过,我们不能在函数内部随意改变全局变量的值。比如,下面的写法就是错误的:

MIN_VALUE = 1
MAX_VALUE = 10
def validation_check(value):
    ...
    MIN_VALUE += 1
    ...
validation_check(5)

如果运行这段代码,程序便会报错:

UnboundLocalError: local variable ‘MIN_VALUE‘ referenced before assignment

这是因为,Python的解释器会默认函数内部的变量为局部变量,但是又发现局部变量MIN_VALUE并没有声明,因此就无法执行相关操作。所以,如果我们一定要在函数内部改变全局变量的值,就必须加上global这个声明:

MIN_VALUE = 1
MAX_VALUE = 10
def validation_check(value):
    global MIN_VALUE
    ...
    MIN_VALUE += 1
    ...
validation_check(5)

这里的global关键字,并不表示重新创建了一个全局变量MIN_VALUE,而是告诉Python解释器,函数内部的变量MIN_VALUE,就是之前定义的全局变量,并不是新的全局变量,也不是局部变量。这样,程序就可以在函数内部访问全局变量,并修改它的值了。

另外,如果遇到函数内部局部变量和全局变量同名的情况,那么在函数内部,局部变量会覆盖全局变量,比如下面这种:

MIN_VALUE = 1
MAX_VALUE = 10
def validation_check(value):
    MIN_VALUE = 3
    ...

在函数validation_check()内部,我们定义了和全局变量同名的局部变量MIN_VALUE,那么,MIN_VALUE在函数内部的值,就应该是3而不是1了。

类似的,对于嵌套函数来说,内部函数可以访问外部函数定义的变量,但是无法修改,若要修改,必须加上nonlocal这个关键字:

def outer():
    x = "local"
    def inner():
        nonlocal x # nonlocal关键字表示这里的x就是外部函数outer定义的变量x
        x = ‘nonlocal‘
        print("inner:", x)
    inner()
    print("outer:", x)
outer()
# 输出
inner: nonlocal
outer: nonlocal

如果不加上nonlocal这个关键字,而内部函数的变量又和外部函数变量同名,那么同样的,内部函数变量会覆盖外部函数的变量。

def outer():
    x = "local"
    def inner():
        x = ‘nonlocal‘ # 这里的x是inner这个函数的局部变量
        print("inner:", x)
    inner()
    print("outer:", x)
outer()
# 输出
inner: nonlocal
outer: local

闭包

这节课的第三个重点,我想再来介绍一下闭包(closure)。闭包其实和刚刚讲的嵌套函数类似,不同的是,这里外部函数返回的是一个函数,而不是一个具体的值。返回的函数通常赋于一个变量,这个变量可以在后面被继续执行调用。

举个例子你就更容易理解了。比如,我们想计算一个数的n次幂,用闭包可以写成下面的代码:

def nth_power(exponent):
    def exponent_of(base):
        return base ** exponent
    return exponent_of # 返回值是exponent_of函数

square = nth_power(2) # 计算一个数的平方
cube = nth_power(3) # 计算一个数的立方 
square
# 输出
<function __main__.nth_power.<locals>.exponent(base)>

cube
# 输出
<function __main__.nth_power.<locals>.exponent(base)>

print(square(2))  # 计算2的平方
print(cube(2)) # 计算2的立方
# 输出
4 # 2^2
8 # 2^3

这里外部函数nth_power()返回值,是函数exponent_of(),而不是一个具体的数值。需要注意的是,在执行完square = nth_power(2)cube = nth_power(3)后,外部函数nth_power()的参数exponent,仍然会被内部函数exponent_of()记住。这样,之后我们调用square(2)或者cube(2)时,程序就能顺利地输出结果,而不会报错说参数exponent没有定义了。

看到这里,你也许会思考,为什么要闭包呢?上面的程序,我也可以写成下面的形式啊!

def nth_power_rewrite(base, exponent):
    return base ** exponent

确实可以,不过,要知道,使用闭包的一个原因,是让程序变得更简洁易读。设想一下,比如你需要计算很多个数的平方,那么你觉得写成下面哪一种形式更好呢?

# 不适用闭包
res1 = nth_power_rewrite(base1, 2)
res2 = nth_power_rewrite(base2, 2)
res3 = nth_power_rewrite(base3, 2)
...

# 使用闭包
square = nth_power(2)
res1 = square(base1)
res2 = square(base2)
res3 = square(base3)
...

显然是第二种,是不是?首先直观来看,第二种形式,让你每次调用函数都可以少输入一个参数,表达更为简洁。

其次,和上面讲到的嵌套函数优点类似,函数开头需要做一些额外工作,而你又需要多次调用这个函数时,将那些额外工作的代码放在外部函数,就可以减少多次调用导致的不必要的开销,提高程序的运行效率。

另外还有一点,我们后面会讲到,闭包常常和装饰器(decorator)一起使用。

总结

这节课,我们一起学习了Python函数的概念及其应用,有这么几点你需要注意:

  1. Python中函数的参数可以接受任意的数据类型,使用起来需要注意,必要时请在函数开头加入数据类型的检查;

  2. 和其他语言不同,Python中函数的参数可以设定默认值;

  3. 嵌套函数的使用,能保证数据的隐私性,提高程序运行效率;

  4. 合理地使用闭包,则可以简化程序的复杂度,提高可读性。

以上是关于09-不可或缺的自定义函数的主要内容,如果未能解决你的问题,请参考以下文章

用于嘈杂的不可微损失函数的自定义 Tensorflow 优化器

如何在 Shader 图形的自定义函数中使用 TEXCOORD0?

找到我的自定义代码片段 Xcode 6?

片段中的自定义列表视图。未找到布局

Three.js 中的自定义纹理着色器

C# 最有用的(自定义)代码片段是啥? [关闭]