奇怪DP之步步为零
Posted soda-ma
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了奇怪DP之步步为零相关的知识,希望对你有一定的参考价值。
题目
思路
很明显的dp就是不会跑啊,所以最后dfs救了一下场,不出所料,最后果然T了,现在说一下正解。
- 为什么说是奇怪dp呢,这道题的dp数组是布尔型的,f[i][j][k]代表在到第i行第j列之前是否能组成k,1(能)或者0(不能);
- 这道题还有一个恶心的地方,就是原始数的存放,可以分n以及n前和n后两个部分来存
- 为了f数组的第三维不为负数(RE欢迎你),我们进行以下操作
- 将存入的数都换为正数,因为对于每一位都有加减两种操作
- 对于每一行,维护一个最大值Max,求(tot=sum_{i=1}^{2*n-1} Max_i),然后在第三维的基础值为tot(统一上移tot位)
- 然后就是dp了
for(int i=2*n-1;i>n;i--){
for(int j=1;j<=2*n-i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
now=k-a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
}
}
}
}
for(int i=n;i>=1;i--){
for(int j=1;j<=i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
now=k-a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
}
}
}
}
分两部分,注意f存的是i行j列>>前<<能否组成k的情况!!如果可以,则就对当前状态进行转移,加或者减
代码
#include<bits/stdc++.h>
using namespace std;
int a[100][60];
int dp[100][60][6005];
int n,tot,Max;
bool judge(int x){
if(x<0 || x>2*tot)return 0;
return 1;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
int Max=0;
for(int j=1;j<=i;j++){
scanf("%d",&a[i][j]);
a[i][j]=abs(a[i][j]);
Max=max(a[i][j],Max);
}
tot+=Max;
}
for(int i=1;i<n;i++){
int Max=0;
for(int j=1;j<=n-i;j++){
scanf("%d",&a[n+i][j]);
a[n+i][j]=abs(a[n+i][j]);
Max=max(a[n+i][j],Max);
}
tot+=Max;
}
dp[2*n-1][1][tot]=1;
int now=0;
for(int i=2*n-1;i>n;i--){
for(int j=1;j<=2*n-i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
now=k-a[i][j];
if(judge(now))dp[i-1][j][now]=dp[i-1][j+1][now]=1;
}
}
}
}
for(int i=n;i>=1;i--){
for(int j=1;j<=i;j++){
for(int k=0;k<=2*tot;k++){
if(dp[i][j][k]){
now=k+a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
now=k-a[i][j];
dp[i-1][j][now]=dp[i-1][j-1][now]=1;
}
}
}
}
int ans=0x7f7f7f7f;
for(int i=0;i<=2*tot;i++){
if(dp[0][0][i]){
ans=min(ans,abs(i-tot));
}
if(dp[0][1][i]){
ans=min(ans,abs(i-tot));
}
}
printf("%d
",ans);
}
以上是关于奇怪DP之步步为零的主要内容,如果未能解决你的问题,请参考以下文章
更改片段(子片段)时 RecyclerView 中的奇怪叠加