hive函数之~窗口函数与分析函数
Posted lojun
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hive函数之~窗口函数与分析函数相关的知识,希望对你有一定的参考价值。
hive当中也带有很多的窗口函数以及分析函数,主要用于以下这些场景
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
1、创建hive表并加载数据
创建表
hive (hive_explode)> create table order_detail( user_id string,device_id string,user_type string,price double,sales int )row format delimited fields terminated by ‘,‘;
加载数据
cd /export/servers/hivedatas vim order_detail
zhangsan,1,new,67.1,2 lisi,2,old,43.32,1 wagner,3,new,88.88,3 liliu,4,new,66.0,1 qiuba,5,new,54.32,1 wangshi,6,old,77.77,2 liwei,7,old,88.44,3 wutong,8,new,56.55,6 lilisi,9,new,88.88,5 qishili,10,new,66.66,5
加载数据
hive (hive_explode)> load data local inpath ‘/export/servers/hivedatas/order_detail‘ into table order_detail;
2、窗口函数
FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值
LEAD(col,n,DEFAULT) :用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
LAG(col,n,DEFAULT) :与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
3、OVER从句
1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列
3、使用PARTITION BY与ORDER BY语句,使用一个或者多个数据类型的分区或者排序列
4、使用窗口规范,窗口规范支持以下格式:
(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
1
2
3
当ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.
当ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。
Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.
Lead 和 Lag 函数.
使用窗口函数进行统计求销量
使用窗口函数sum over统计销量
hive (hive_explode)> select user_id, user_type, sales, --分组内所有行 sum(sales) over(partition by user_type) AS sales_1 , sum(sales) over(order by user_type) AS sales_2 , --默认为从起点到当前行,如果sales相同,累加结果相同 sum(sales) over(partition by user_type order by sales asc) AS sales_3, --从起点到当前行,结果与sales_3不同。 根据排序先后不同,可能结果累加不同 sum(sales) over(partition by user_type order by sales asc rows between unbounded preceding and current row) AS sales_4, --当前行+往前3行 sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and current row) AS sales_5, --当前行+往前3行+往后1行 sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and 1 following) AS sales_6, --当前行+往后所有行 sum(sales) over(partition by user_type order by sales asc rows between current row and unbounded following) AS sales_7 from order_detail order by user_type, sales, user_id;
统计之后求得结果如下:
+-----------+------------+--------+----------+----------+----------+----------+----------+----------+----------+--+ | user_id | user_type | sales | sales_1 | sales_2 | sales_3 | sales_4 | sales_5 | sales_6 | sales_7 | +-----------+------------+--------+----------+----------+----------+----------+----------+----------+----------+--+ | liliu | new | 1 | 23 | 23 | 2 | 2 | 2 | 4 | 22 | | qiuba | new | 1 | 23 | 23 | 2 | 1 | 1 | 2 | 23 | | zhangsan | new | 2 | 23 | 23 | 4 | 4 | 4 | 7 | 21 | | wagner | new | 3 | 23 | 23 | 7 | 7 | 7 | 12 | 19 | | lilisi | new | 5 | 23 | 23 | 17 | 17 | 15 | 21 | 11 | | qishili | new | 5 | 23 | 23 | 17 | 12 | 11 | 16 | 16 | | wutong | new | 6 | 23 | 23 | 23 | 23 | 19 | 19 | 6 | | lisi | old | 1 | 6 | 29 | 1 | 1 | 1 | 3 | 6 | | wangshi | old | 2 | 6 | 29 | 3 | 3 | 3 | 6 | 5 | | liwei | old | 3 | 6 | 29 | 6 | 6 | 6 | 6 | 3 | +-----------+------------+--------+----------+----------+----------+----------+----------+----------+----------+--+
注意:
结果和ORDER BY相关,默认为升序
如果不指定ROWS BETWEEN,默认为从起点到当前行;
如果不指定ORDER BY,则将分组内所有值累加;
关键是理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点
其他COUNT、AVG,MIN,MAX,和SUM用法一样。
求分组后的第一个和最后一个值first_value与last_value
使用first_value和last_value求分组后的第一个和最后一个值
select user_id, user_type, ROW_NUMBER() OVER(PARTITION BY user_type ORDER BY sales) AS row_num, first_value(user_id) over (partition by user_type order by sales desc) as max_sales_user, first_value(user_id) over (partition by user_type order by sales asc) as min_sales_user, last_value(user_id) over (partition by user_type order by sales desc) as curr_last_min_user, last_value(user_id) over (partition by user_type order by sales asc) as curr_last_max_user from order_detail;
+-----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+ | user_id | user_type | row_num | max_sales_user | min_sales_user | curr_last_min_user | curr_last_max_user | +-----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+ | wutong | new | 7 | wutong | qiuba | wutong | wutong | | lilisi | new | 6 | wutong | qiuba | qishili | lilisi | | qishili | new | 5 | wutong | qiuba | qishili | lilisi | | wagner | new | 4 | wutong | qiuba | wagner | wagner | | zhangsan | new | 3 | wutong | qiuba | zhangsan | zhangsan | | liliu | new | 2 | wutong | qiuba | qiuba | liliu | | qiuba | new | 1 | wutong | qiuba | qiuba | liliu | | liwei | old | 3 | liwei | lisi | liwei | liwei | | wangshi | old | 2 | liwei | lisi | wangshi | wangshi | | lisi | old | 1 | liwei | lisi | lisi | lisi | +-----------+------------+----------+-----------------+-----------------+---------------------+---------------------+--+
4、分析函数
1、 ROW_NUMBER():
从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
2、 RANK() :
生成数据项在分组中的排名,排名相等会在名次中留下空位
3、 DENSE_RANK() :
生成数据项在分组中的排名,排名相等会在名次中不会留下空位
4、 CUME_DIST :
小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例
5、 PERCENT_RANK :
分组内当前行的RANK值-1/分组内总行数-1
6、 NTILE(n) :
用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。
RANK、ROW_NUMBER、DENSE_RANK OVER的使用
使用这几个函数,可以实现分组求topN
需求:按照用户类型进行分类,求取销售量最大的前N条数据
select user_id,user_type,sales, RANK() over (partition by user_type order by sales desc) as r, ROW_NUMBER() over (partition by user_type order by sales desc) as rn, DENSE_RANK() over (partition by user_type order by sales desc) as dr from order_detail;
+-----------+------------+--------+----+-----+-----+--+ | user_id | user_type | sales | r | rn | dr | +-----------+------------+--------+----+-----+-----+--+ | wutong | new | 6 | 1 | 1 | 1 | | qishili | new | 5 | 2 | 2 | 2 | | lilisi | new | 5 | 2 | 3 | 2 | | wagner | new | 3 | 4 | 4 | 3 | | zhangsan | new | 2 | 5 | 5 | 4 | | qiuba | new | 1 | 6 | 6 | 5 | | liliu | new | 1 | 6 | 7 | 5 | | liwei | old | 3 | 1 | 1 | 1 | | wangshi | old | 2 | 2 | 2 | 2 | | lisi | old | 1 | 3 | 3 | 3 | +-----------+------------+--------+----+-----+-----+--+
使用NTILE求取百分比
我们可以使用NTILE来将我们的数据分成多少份,然后求取百分比
使用NTILE将数据进行分片
select user_type,sales, --分组内将数据分成2片 NTILE(2) OVER(PARTITION BY user_type ORDER BY sales) AS nt2, --分组内将数据分成3片 NTILE(3) OVER(PARTITION BY user_type ORDER BY sales) AS nt3, --分组内将数据分成4片 NTILE(4) OVER(PARTITION BY user_type ORDER BY sales) AS nt4, --将所有数据分成4片 NTILE(4) OVER(ORDER BY sales) AS all_nt4 from order_detail order by user_type, sales;
得到结果如下:
+------------+--------+------+------+------+----------+--+ | user_type | sales | nt2 | nt3 | nt4 | all_nt4 | +------------+--------+------+------+------+----------+--+ | new | 1 | 1 | 1 | 1 | 1 | | new | 1 | 1 | 1 | 1 | 1 | | new | 2 | 1 | 1 | 2 | 2 | | new | 3 | 1 | 2 | 2 | 3 | | new | 5 | 2 | 2 | 3 | 4 | | new | 5 | 2 | 3 | 3 | 3 | | new | 6 | 2 | 3 | 4 | 4 | | old | 1 | 1 | 1 | 1 | 1 | | old | 2 | 1 | 2 | 2 | 2 | | old | 3 | 2 | 3 | 3 | 2 | +------------+--------+------+------+------+----------+--+
使用NTILE求取sales前20%的用户id
select user_id from (select user_id, NTILE(5) OVER(ORDER BY sales desc) AS nt from order_detail )A where nt=1;
+----------+--+ | user_id | +----------+--+ | wutong | | qishili |
5、增强的聚合Cuhe和Grouping和Rollup
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL,
其中的GROUPING__ID,表示结果属于哪一个分组集合。
需求:按照user_type和sales分别进行分组求取数据
0: jdbc:hive2://node03:10000>select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detail group by user_type,sales GROUPING SETS(user_type,sales) ORDER BY GROUPING__ID;
求取结果如下:
+------------+--------+-----+---------------+--+ | user_type | sales | pv | grouping__id | +------------+--------+-----+---------------+--+ | old | NULL | 3 | 1 | | new | NULL | 7 | 1 | | NULL | 6 | 1 | 2 | | NULL | 5 | 2 | 2 | | NULL | 3 | 2 | 2 | | NULL | 2 | 2 | 2 | | NULL | 1 | 3 | 2 | +------------+--------+-----+---------------+--+
需求:按照user_type,sales,以及user_type + salse 分别进行分组求取统计数据
0: jdbc:hive2://node03:10000>select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detail group by user_type,sales GROUPING SETS(user_type,sales,(user_type,sales)) ORDER BY GROUPING__ID;
求取结果如下:
+------------+--------+-----+---------------+--+ | user_type | sales | pv | grouping__id | +------------+--------+-----+---------------+--+ | old | NULL | 3 | 1 | | new | NULL | 7 | 1 | | NULL | 1 | 3 | 2 | | NULL | 6 | 1 | 2 | | NULL | 5 | 2 | 2 | | NULL | 3 | 2 | 2 | | NULL | 2 | 2 | 2 | | old | 3 | 1 | 3 | | old | 2 | 1 | 3 | | old | 1 | 1 | 3 | | new | 6 | 1 | 3 | | new | 5 | 2 | 3 | | new | 3 | 1 | 3 | | new | 1 | 2 | 3 | | new | 2 | 1 | 3 | +------------+--------+-----+---------------+--+
6、使用cube 和ROLLUP 根据GROUP BY的维度的所有组合进行聚合。
cube进行聚合
需求:不进行任何的分组,按照user_type进行分组,按照sales进行分组,按照user_type+sales进行分组求取统计数据
0: jdbc:hive2://node03:10000>select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detail group by user_type,sales WITH CUBE ORDER BY GROUPING__ID;
+------------+--------+-----+---------------+--+ | user_type | sales | pv | grouping__id | +------------+--------+-----+---------------+--+ | NULL | NULL | 10 | 0 | | new | NULL | 7 | 1 | | old | NULL | 3 | 1 | | NULL | 6 | 1 | 2 | | NULL | 5 | 2 | 2 | | NULL | 3 | 2 | 2 | | NULL | 2 | 2 | 2 | | NULL | 1 | 3 | 2 | | old | 3 | 1 | 3 | | old | 2 | 1 | 3 | | old | 1 | 1 | 3 | | new | 6 | 1 | 3 | | new | 5 | 2 | 3 | | new | 3 | 1 | 3 | | new | 2 | 1 | 3 | | new | 1 | 2 | 3 | +------------+--------+-----+---------------+--+
ROLLUP进行聚合
rollup是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
select user_type, sales, count(user_id) as pv, GROUPING__ID from order_detail group by user_type,sales WITH ROLLUP ORDER BY GROUPING__ID;
+------------+--------+-----+---------------+--+ | user_type | sales | pv | grouping__id | +------------+--------+-----+---------------+--+ | NULL | NULL | 10 | 0 | | old | NULL | 3 | 1 | | new | NULL | 7 | 1 | | old | 3 | 1 | 3 | | old | 2 | 1 | 3 | | old | 1 | 1 | 3 | | new | 6 | 1 | 3 | | new | 5 | 2 | 3 | | new | 3 | 1 | 3 | | new | 2 | 1 | 3 | | new | 1 | 2 | 3 | +------------+--------+-----+---------------+--+
以上是关于hive函数之~窗口函数与分析函数的主要内容,如果未能解决你的问题,请参考以下文章