每日一题 - 剑指 Offer 43. 1~n整数中1出现的次数
Posted id-wangqiang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了每日一题 - 剑指 Offer 43. 1~n整数中1出现的次数相关的知识,希望对你有一定的参考价值。
题目信息
-
时间: 2019-07-01
-
题目链接:Leetcode
-
tag: 整除 取余 规律 递归
-
难易程度:中等
-
题目描述:
输入一个整数 n ,求1~n这n个整数的十进制表示中1出现的次数。
例如,输入12,1~12这些整数中包含1 的数字有1、10、11和12,1一共出现了5次。
示例1:
输入:n = 12
输出:5
示例2:
输入:n = 13
输出:6
提示
1. 1 <= n < 2^31
解题思路
本题难点
数字 n 是个 x 位数,记 n 的第 i 位为 n i ,则可将 n 写为 nx nx?1?n2 n1,n的位数都可能为1。
具体思路
将 1 ~ n 的个位、十位、百位、...的 1 出现次数相加,即为 1 出现的总次数。
某位中 11出现次数的计算方法:
根据当前位 cur 值的不同,分为以下三种情况:
- cur=0:此位 1的出现次数只由高位 high决定,high×digit
- cur=1: 此位 1的出现次数只由高位 high和地位low决定,high×digit+low+1
- cur !=1:此位 1的出现次数只由高位 high决定,(high+1)×digit
代码
class Solution {
public int countDigitOne(int n) {
//设计按照 “个位、十位、...” 的顺序计算
int digit = 1,res = 0;
int high = n / 10 ,cur = n% 10,low = 0;
//当 high 和 cur 同时为 0 时,说明已经越过最高位,因此跳出
while(high != 0 || cur != 0){
if(cur == 0){
res += high * digit;
}else if(cur == 1){
res += high * digit + low + 1;
}else{
res += (high + 1) * digit;
}
//将 cur 加入 low ,组成下轮 low
low += cur * digit;
//下轮 cur 是本轮 high 的最低位
cur = high % 10;
//将本轮 high 最低位删除,得到下轮 high
high /= 10;
//位因子每轮 × 10
digit *= 10;
}
return res;
}
}
复杂度分析:
- 时间复杂度 O(logn) : 循环内的计算操作使用 O(1) 时间;循环次数为数字 n 的位数,即 log n ,因此循环使用 O(logn) 时间。
- 空间复杂度 O(1) : 几个变量使用常数大小的额外空间。
其他优秀解答
解题思路
f(n))函数的意思是1~n这n个整数的十进制表示中1出现的次数,将n拆分为两部分,最高一位的数字high和其他位的数字last,分别判断情况后将结果相加。
示例1:
例子如n=1234,high=1, pow=1000, last=234
可以将数字范围分成两部分1~999和1000~1234
1~999这个范围1的个数是f(pow-1)
1000~1234这个范围1的个数需要分为两部分:
千分位是1的个数:千分位为1的个数刚好就是234+1(last+1),注意,这儿只看千分位,不看其他位
其他位是1的个数:即是234中出现1的个数,为f(last)
所以全部加起来是f(pow-1) + last + 1 + f(last);
示例2:
例子如3234,high=3, pow=1000, last=234
可以将数字范围分成两部分1~999,1000~1999,2000~2999和3000~3234
1~999这个范围1的个数是f(pow-1)
1000~1999这个范围1的个数需要分为两部分:
千分位是1的个数:千分位为1的个数刚好就是pow,注意,这儿只看千分位,不看其他位
其他位是1的个数:即是999中出现1的个数,为f(pow-1)
2000~2999这个范围1的个数是f(pow-1)
3000~3234这个范围1的个数是f(last)
所以全部加起来是pow + high*f(pow-1) + f(last);
代码
class Solution {
public int countDigitOne(int n) {
return f(n);
}
private int f(int n ) {
if (n <= 0)
return 0;
String s = String.valueOf(n);
int high = s.charAt(0) - ‘0‘;
int pow = (int) Math.pow(10, s.length()-1);
int last = n - high*pow;
if (high == 1) {
return f(pow-1) + last + 1 + f(last);
} else {
return pow + high*f(pow-1) + f(last);
}
}
}
以上是关于每日一题 - 剑指 Offer 43. 1~n整数中1出现的次数的主要内容,如果未能解决你的问题,请参考以下文章
乱序版 ● 剑指offer每日算法题打卡题解—— 分治算法(题号7,33,64)
LeetCode13. 罗马数字转整数 / 剑指 Offer 42. 连续子数组的最大和 / 剑指 Offer 43. 1~n 整数中 1 出现的次数
Java每日一题——>剑指 Offer II 036. 后缀表达式
Java每日一题——>剑指 Offer II 036. 后缀表达式