SVM简述

Posted chadyoungs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SVM简述相关的知识,希望对你有一定的参考价值。

转自他人文章转自:https://blog.csdn.net/v_july_v/article/details/7624837

1 介绍

SVM(Support Vector Machines)——支持向量机是在所有知名的数据挖掘算法中最健壮,最准确的方法之一,它属于二分类算法,可以支持线性和非线性的分类。
支持向量与超平面
在了解svm算法之前,我们首先需要了解一下线性分类器这个概念。比如给定一系列的数据样本,每个样本都有对应的一个标签。为了使得描述更加直观,我们采用二维平面进行解释,高维空间原理也是一样。
举个例子,假设在一个二维线性可分的数据集中,图一A所示,我们要找到一个超平面把两组数据分开,这时,我们认为线性回归的直线或逻辑回归的直线也能够做这个分类,这条直线可以是图一B中的直线,也可以是图一C中的直线,或者图一D中的直线,但哪条直线才最好呢,也就是说哪条直线能够达到最好的泛化能力呢?那就是一个能使两类之间的空间大小最大的一个超平面。
这个超平面在二维平面上看到的就是一条直线,在三维空间中就是一个平面...,因此,我们把这个划分数据的决策边界统称为超平面。离这个超平面最近的点就叫做支持向量,点到超平面的距离叫间隔。支持向量机就是要使超平面和支持向量之间的间隔尽可能的大,这样超平面才可以将两类样本准确的分开,而保证间隔尽可能的大就是保证我们的分类器误差尽可能的小,尽可能的健壮。

技术图片

2 工作原理

2.1 点到超平面的距离公式

既然这样的直线是存在的,那么我们怎样寻找出这样的直线呢?与二维空间类似,超平面的方程也可以写成一下形式:


技术图片

有了超平面的表达式之后之后,我们就可以计算样本点到平面的距离了。假设


技术图片

为样本的中的一个点,其中xi表示为第个特征变量。那么该点到超平面的距离d就可以用如下公式进行计算:
技术图片

其中||W||为超平面的范数,常数b类似于直线方程中的截距。

2.2 最大间隔的优化模型

现在我们已经知道了如何去求数据点到超平面的距离,在超平面确定的情况下,我们就能够找出所有支持向量,然后计算出间隔margin。每一个超平面都对应着一个margin,我们的目标就是找出所有margin中最大的那个值对应的超平面。因此用数学语言描述就是确定w、b使得margin最大。这是一个优化问题其目标函数可以写成:

技术图片

其中y表示数据点的标签,且其为-1或1。距离用计算y(wx+b),这是就能体会出-1和1的好处了。如果数据点在平面的正方向(即+1类)那么y(wx+b)是一个正数,而当数据点在平面的负方向时(即-1类),y(wx+b)依然是一个正数,这样就能够保证始终大于零了。注意到当w和b等比例放大时,d的结果是不会改变的。因此我们可以令所有支持向量的u为1,而其他点的u大1这是可以办通过调节w和b求到的。因此上面的问题可以简化为:
技术图片

为了后面计算的方便,我们将目标函数等价替换为:
技术图片

这是一个有约束条件的优化问题,通常我们可以用拉格朗日乘子法来求解。应用拉格朗日乘子法如下:
技术图片

求L关于求偏导数得:
技术图片

带入计算得:
技术图片

原问题的对偶问题为:
技术图片

该对偶问题的KKT条件为:
技术图片

到此,似乎问题就能够完美地解决了。但是这里有个假设:数据必须是百分之百可分的。但是实际中的数据几乎都不那么“干净”,或多或少都会存在一些噪点。为此下面我们将引入了松弛变量来解决这种问题。

2.3 松弛变量

由上一节的分析我们知道实际中很多样本数据都不能够用一个超平面把数据完全分开。如果数据集中存在噪点的话,那么在求超平的时候就会出现很大问题。从图三中课看出其中一个蓝点偏差太大,如果把它作为支持向量的话所求出来的margin就会比不算入它时要小得多。更糟糕的情况是如果这个蓝点落在了红点之间那么就找不出超平面了。


技术图片

因此引入一个松弛变量ξ来允许一些数据可以处于分隔面错误的一侧。这时新的约束条件变为:


技术图片

式中ξi的含义为允许第i个数据点允许偏离的间隔。如果让ξ任意大的话,那么任意的超平面都是符合条件的了。所以在原有目标的基础之上,我们也尽可能的让ξ的总量也尽可能地小。所以新的目标函数变为:
技术图片

其中的C是用于控制“最大化间隔”和“保证大部分的点的函数间隔都小于1”这两个目标的权重。将上述模型完整的写下来就是:


技术图片

新的拉格朗日函数变为:
技术图片

接下来将拉格朗日函数转化为其对偶函数,首先对L
分别求偏导,并令其为0,结果如下:
技术图片

代入原式化简之后得到和原来一样的目标函数:
技术图片

经过添加松弛变量的方法,我们现在能够解决数据更加混乱的问题。通过修改参数C,我们可以得到不同的结果而C的大小到底取多少比较合适,需要根据实际问题进行调节。

2.4 核函数

以上讨论的都是在线性可分情况进行讨论的,但是实际问题中给出的数据并不是都是线性可分的,比如有些数据可能是如图样子。


技术图片

而对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。
在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。


技术图片

事实上,上图所述的这个数据集,是用两个半径不同的圆圈加上了少量的噪音生成得到的,所以,一个理想的分界应该是一个“圆圈”而不是一条线(超平面)。
因此我只需要把它映射到 , , 这样一个三维空间中即可,下图即是映射之后的结果,将坐标轴经过适当的旋转,就可以很明显地看出,数据是可以通过一个平面来分开的:
技术图片

上面说了这么一大堆,读者可能还是没明白核函数到底是个什么东西?我再简要概括下,即以下三点:

实际中,我们会经常遇到线性不可分的样例,此时,我们的常用做法是把样例特征映射到高维空间中去(如上文2.2节最开始的那幅图所示,映射到高维空间后,相关特征便被分开了,也就达到了分类的目的);
但进一步,如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小是会高到可怕的(如上文中19维乃至无穷维的例子)。那咋办呢?
此时,核函数就隆重登场了,核函数的价值在于它虽然也是讲特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表现在了高维上,也就如上文所说的避免了直接在高维空间中的复杂计算。

 

以上是关于SVM简述的主要内容,如果未能解决你的问题,请参考以下文章

SVM算法原理

svm原理之svm分类超平面

Hu矩SVM训练及检测-----OpenCV

Base64算法原理及实现

Base64算法原理及实现

理解SVM模型的目标函数