Luogu1185 | 绘制二叉树(分治)
Posted zhwer
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Luogu1185 | 绘制二叉树(分治)相关的知识,希望对你有一定的参考价值。
题目描述
二叉树是一种基本的数据结构,它要么为空,要么由根节点,左子树和右子树组成,同时左子树和右子树也分别是二叉树。
当一颗二叉树高度为 (m?1) 时,则共有 (m) 层。除 (m) 层外,其他各层的结点数都达到最大,且结点节点都在第 (m) 层时,这就是一个满二叉树。
现在,需要你用程序来绘制一棵二叉树,它由一颗满二叉树去掉若干结点而成。对于一颗满二叉树,我们需要按照以下要求绘制:
1、结点用小写字母 (‘o‘) 表示,对于一个父亲结点,用 (‘/‘) 连接左子树,同样用 (‘ackslash‘) 连接右子树。
2、定义 ([i,j]) 为位于第 (i) 行第 (j) 列的某个字符。若 ([i,j]) 为 (‘/‘) ,那么 ([i?1,j+1]) 与 ([i+1,j?1]) 要么为 ‘(o‘),要么为 (‘/‘) 。若 ([i,j]) 为 (‘ackslash‘),那么 ([i-1,j-1]) 与([i+1,j+1]) 要么为 (‘o‘),要么为 (‘ackslash‘)。同样,若 ([i,j]) 为第 (1?m) 层的某个节点(即 (‘o‘)),那么 ([i+1,j?1]) 为 (‘/‘),([i+1,j+1]) 为 (‘ackslash‘)。
3、对于第 (m) 层节点也就是叶子结点,若两个属于同一个父亲,那么它们之间由3由3个空格隔开,若两个结点相邻但不属于同一个父亲,那么它们之间由 (1) 个空格隔开。第 (m) 层左数第 (1) 个节点之前没有空格。
最后需要在一颗绘制好的满二叉树上删除 (n) 个结点(包括它的左右子树,以及与父亲的连接),原有的字符用空格替换(ASCII 32,请注意空格与 ASCII 0 的区别,若用记事本打开看起来是一样的,但是评测时会被算作错误答案!)。
输入格式
第11行包含22个正整数mm和nn,为需要绘制的二叉树层数已经从mm层满二叉树中删除的结点数。
接下来nn行,每行两个正整数,表示第ii层第jj个结点需要被删除(1<i≤M,j≤2i-11<i≤M,j≤2i?1)。
输出格式
按照题目要求绘制的二叉树。
输入输出样例
输入 #1
2 0
输出 #1
o
/
o o
输入 #2
4 0
输出 #2
o
/
/
/
/
/
o o
/ /
/ /
o o o o
/ / / /
o o o o o o o o
输入 #3
4 3
3 2
4 1
3 4
输出 #3
o
/
/
/
/
/
o o
/ /
/ /
o o
/
o o o
说明/提示
(30\%) 的数据满足:(n=0);
(50\%) 的数据满足:(2≤m≤5);
(100\%)的数据满足:(2≤m≤10,0≤n≤10)。
——————————————————————————————————————
模拟题,运用了分治的思想
首先考虑二叉树怎么表示,我这里使用了一维数组表示法,
若根节点编号为 (i),左节点编号为 (i*2),右节点编号为 (i*2+1)
由于只考虑被删除的节点编号比较方便,所以用 (tree[]) 数组标记节点是否被删除,
绘图过程也是根据这个进行分治的
接下来要确定根节点的坐标,这里引入 (pos[]) 数组,
(pos[i]) 表示高度为 (i) 的二叉树(靠左)根节点的列号(第一列为 (0))
找一下规律,(pos[]) 的值可以递推出来:
pos[1]=0,pos[2]=2,pos[3]=5;
for (int i=4;i<=m;i++)
pos[i]=pos[i-1]+6*(1<<(i-4));
于是我们之后就用 (pos) 和相邻 (pos) 的差确定节点在画布上的偏移,以此进行分治操作
solve(int x,int y,int h,int num)
传递的四个变量分别是:
当前节点的行号,当前节点的列号,当前节点的高度,当前节点在 (tree[]) 数组里的编号
具体操作请见代码,注意绘图格式要求比较严格,要精确计算到每一个字符的位置
代码如下:
#include <bits/stdc++.h>
#define MAXN 2007
using namespace std;
int m,n,pos[17],tree[2<<11];
char ans[MAXN][MAXN];
inline void solve(int x,int y,int h,int num) {
ans[x][y]=‘o‘;
if (h==1) return;
int f=pos[h]-pos[h-1]; //计算根节点与节点点列号的偏移
if (!tree[num<<1]) {
for (int i=1;i<f;i++)
ans[x+i][y-i]=‘/‘;
solve(x+f,y-f,h-1,num<<1);
}
if (!tree[(num<<1)+1]) {
for (int i=1;i<f;i++)
ans[x+i][y+i]=‘\‘; //反斜杠要加上转义符
solve(x+f,y+f,h-1,(num<<1)+1);
}
}
inline void print() {
for (int i=0;i<=pos[m];i++) {
for (int j=0;j<=pos[m]*2;j++)
printf("%c",ans[i][j]?ans[i][j]:32); //要替换不对的空格
printf("
");
}
}
int main() {
memset(tree,0,sizeof(tree));
scanf("%d%d",&m,&n);
pos[1]=0,pos[2]=2,pos[3]=5; //找规律出来的
for (int i=4;i<=m;i++)
pos[i]=pos[i-1]+6*(1<<(i-4));
while (n--) {
int i,j;
scanf("%d%d",&i,&j);
tree[(1<<(i-1))+j-1]=true;
}
if (!tree[1]) solve(0,pos[m],m,1);
print();
return 0;
}
以上是关于Luogu1185 | 绘制二叉树(分治)的主要内容,如果未能解决你的问题,请参考以下文章
Leetcode之分治法专题-654. 最大二叉树(Maximum Binary Tree)