(2020.6.26)GNN预训练

Posted sqlkrad

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(2020.6.26)GNN预训练相关的知识,希望对你有一定的参考价值。

今天读到一篇KDD2020的论文,感觉很有启发,BERT的预训练在NLP领域已经很成功了,但在图嵌入领域还没有成功的预训练,这篇文章就解决了这个问题。

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
代码:https://github.com/THUDM/GCC
从这篇文章的结果来看,预训练确实给模型的鲁棒性带来了很大的提升,应该可以作为以后图嵌入任务的强基线模型了。

文中使用的GNN模型是GIN,对应这篇论文:HOW POWERFUL ARE GRAPH NEURAL NETWORKS?
虽然有些实验结果GIN效果更好,但是文中说GIN是在不同的超参数下获得的更好的效果,对于统一的超参数GCC更稳定。

如果说存在的问题的话,就是不确定什么时候应该选择哪种策略,因为光从实验结果来看,freeze和full、E2E和MoCo都有各自SOTA的结果。另一方面,GCC无法表示节点属性,且无法表示关系类型。应该算是以后的改进点。




以上是关于(2020.6.26)GNN预训练的主要内容,如果未能解决你的问题,请参考以下文章

论文笔记之GPT-GNN: Generative Pre-Training of Graph Neural Networks

迁移学习(Transfer learning)重用预训练图层预训练模型库

《预训练周刊》第33期:预训练语言模型的高效分层域适应

BERT:深度双向预训练语言模型

最强 NLP 预训练模型库 PyTorch-Transformers 正式开源:支持 6 个预训练框架,27 个预训练模型

中文bert wwm 预训练参考笔记