[omega_{n}^{k}=cos left( dfrac{2kpi}{n}
ight) + i sin left( dfrac{2kpi}{n}
ight) (0 le k le n-1)
]
探索一下它的性质:
(omega_n^0 =1)
显然有(omega_n^0=cos 0 +i sin 0 =0)
(omega_n^k=(omega_n^1)^k)
显然
[omega_n^k=cos left( dfrac{2kpi}{n}
ight) + i sin left( dfrac{2kpi}{n}
ight)= e^{frac{2pi}{n} k} = left(e^{frac{2pi}{n}}
ight) ^k = (omega_n^1)^k
]
证毕。
(omega_{dn}^{dk}=omega_n^k)
显然
[omega_{dn}^{dk}=cos left( dfrac{2dkpi}{dn}
ight) + i sin left( dfrac{2dkpi}{dn}
ight)= cos left( dfrac{2kpi}{n}
ight) + i sin left( dfrac{2kpi}{n}
ight) = omega_n^k
]
证毕。
(omega_n^{k+frac{n}{2}} = -omega_n^k)
显然
[egin{aligned} omega_n^{k+frac{n}{2}} & =cos left( dfrac{2left(k+frac{n}{2}
ight)pi}{n}
ight) + i sin left( dfrac{2left(k+frac{n}{2}
ight)pi}{n}
ight) & = cos left( dfrac{2kpi+npi}{n}
ight) + i sin left( dfrac{2kpi+npi}{n}
ight) & = cos left( dfrac{2kpi}{n} +pi
ight) + i sin left( dfrac{2kpi}{n} +pi
ight) & = -cos left( dfrac{2kpi}{n}
ight) - i sin left( dfrac{2kpi}{n}
ight) & = -omega_n^k end{aligned}]