分支界限法的应用

Posted duanshuai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分支界限法的应用相关的知识,希望对你有一定的参考价值。

一. 人员安排问题

  • 问题定义:

-输入:

人员:P={ P1,P2…Pn} ; 工作:J={J1,J2…Jn} ; 矩阵[Cij]:表示Pi完成Jj的代价

限制条件:P是全序集,J是偏序集,要优先把高难度的任务分配给业务能力强的人员(即:分配任务的一 一映射函数f:若f(Pi) < f(Pj),则 Pi < Pj )

-输出:

[Xij]:Xij=1表示Pi完成Pj工作,否则Xij=0,使∑CijXij最小

  • 算法设计

若无限制条件:最大二分匹配问题:匈牙利算法/最大流的FF算法

有限制条件:搜索的问题

  • 如何转化成图的搜索问题

问题解空间:若 P1~>Jk1 , P2~>Jk2 ,…Pn~>Jkn , 则Jk1,Jk2,Jk3满足拓扑序

将可行解空间表示为拓扑树。

技术图片

该问题的拓扑树如下

                      技术图片

 

 

 树高 i 表示Pi,结点 j 表示任务Jj

  • 算法设计

(1)得到拓扑序列树

      输入:偏序集合S,树根root
      输出:由S的所有拓扑排序序列构成的树
      1. 生成树根root
      2. 选择偏序集合中没有前驱元素的所有元素,作为root的子节点
      3. 对于root的每一个子节点v Do
      4.       S = S - {v}
      5.       把v作为根,递归地处理S。

(2)分支界限求解

a. 得到每个步骤的尽可能大的下界:维护每个步骤尽可能大的下界的一个优先队列,有利于更快的剪枝

将矩阵[Cij]每行、列减去最小值,将减去的最小值求和得到初始问题的下界

b. 得到优化解的上界:用爬山法搜索得到一个可行解,作为优化解的上界

每次比较当前步骤的下界优化解的上界来进行剪枝

c. 更新最优解的上界,重复步骤b,直到所有分支被剪去

二. 旅行商问题

  • 问题定义:

输入:带权无环无向连通图G=(V,E)

输出:一条由任意节点开始,经过每个节点一次,最后返回开始节点的路径,该路径的代价最小。

  • 算法设计

                      (1)可以使用上述问题中由每一步最大下界整体上界的方法剪枝

上述方法每次只能剪去1/n的分支,在这里我们给出一种更优的思路:

改变解空间的定义方法,将问题的解空间表示成二叉树,这样可以一次剪去1/2的分支

                    (2)使用二叉树的分支界限法

a.预处理:[Xij] :表示i~>j的权值,二叉树T:结点表示路径,左子树表示包含该路径的解空间,右子树表示不包含该路径的解空间

b.剪枝技巧:1. [Xij]每行列减去最小值得到初始问题的下界

                     2. 结点表示路径的选取要使左右子树差距更大,利于剪枝

                                     设最优选取的路径为ij,满足ij最小,且im + kj最大(矩阵点ij对应行列最小值的和最大)

c. 分支界限过程

左子树:贪心选择的局部最优解(获得问题的上界)

右子树:每一步骤对应的最大下界

d. 不断剪枝更新上界,直到分支为0,问题上界即为所求

注意:保证每次的上界是一个可行解(避免出现环)

 

 

以上是关于分支界限法的应用的主要内容,如果未能解决你的问题,请参考以下文章

五类常见算法小记 (递归与分治,动态规划,贪心,回溯,分支界限法)

分治法应用之二分查找 快速排序递归排序

分支定界 (branch and bound)求解TSP问题

算法学习笔记

算法学习笔记

算法学习笔记