3分钟看懂人脸识别原理
Posted niulang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了3分钟看懂人脸识别原理相关的知识,希望对你有一定的参考价值。
人脸识别范围很广泛,目前有十个关键技术
1. 人脸检测(face detection)是检测出图像中人脸位置的技术
一般输入是一张图片,输出是人脸所在位置,常用矩形框标记在原图之上;
2. 人脸配准(face alignment)是定位人脸五官关键点坐标的技术
一般输入是人脸图像+人脸坐标框,输出是五官关键点坐标序列,输入一般会统一尺寸;
3. 人脸属性识别(face atrribute)是识别人脸的性别、年龄、姿态、表情等属性的技术
一般输入是人脸图像+五官关键点坐标,输出是人脸属性值,输入一般会调整统一尺寸和旋转角度,保证数据的统一性再做分析;
4. 人脸特征提取(face feature extraction)是将人脸图像转化为一串固定长度的数字串的技术
一般输入是人脸图像+五官关键点坐标,输出是一串固定长度的数字串;
5. 人脸对比(face compare)是对比两张人脸相似度的技术
一般输入是两张人脸的特征(即两个固定长度的数字串),输出是两张人脸的相似度,人脸验证、人脸识别、人脸检索都是在人脸比对的基础上加一些策略来实现;
6. 人脸验证(face verification)判断两张人脸是否为同一个人的技术
一般输入是两个人脸特征,通过计算相似度并且和预先设置的阈值进行比较,输出为是否为同一个人;
7. 人脸识别(face recognition)是识别出输入人脸对应身份的技术
一般输入是一个人脸特征,通过对比数据库已有的人脸特征计算最高的相似度并与阈值比较,输出是人脸对应的身份,当相似度小于阈值时,输入人脸不在数据库中;
8. 人脸检索,是查询和输入人脸相似的人脸序列的技术
一般输入是一个人脸特征,通过对比数据库已有人脸特征计算相似度,并对一定数量的人脸根据相似度由高到低进行排序作为输出;
9. 人脸聚类(face cluster)是将一个集合内的人脸按身份进行分组的技术(这个集合中可能会有多张人脸属于一个身份)
一般输入是一个人脸集合,将集合内的人脸两两对比相似度,通过分析,将集合内的人脸图按身份进行分组作为输出;
10. 人脸活体(face liveness)是判断人脸是来自真人还是攻击假体(照片、视频等)的技术
以上是关于3分钟看懂人脸识别原理的主要内容,如果未能解决你的问题,请参考以下文章