红黑树

Posted wanglelelihuanhuan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了红黑树相关的知识,希望对你有一定的参考价值。

红黑树介绍:

红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。 红黑树和我们以前学过的AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。红黑树和AVL树的区别在于它使用颜色来标识结点的高度,它所追求的是局部平衡而不是AVL树中的非常严格的平衡。 红黑树是满足下面红黑性质的二叉搜索树:
  1. 每个节点,不是红色就是黑色的
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个子节点是黑色的(没有连续的红节点)
  4. 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。(每条路径的黑色节点的数量相等
  5. 每个叶子节点都是黑色的(这里的叶子节点是指的NIL节点(空节点))
红黑树包括插入、删除、查找等操作。 插入: 根据性质4,新增节点必须为红色;根据性质3,新增节点的父节点必须为黑色。 1、若该树为空树,直接插入根结点的位置,违反性质2,把节点颜色有红改为黑即可。 2、插入节点cur的父节点parent为黑色,不违反任何性质,无需做任何修改 3、插入节点cur为红,parent为红,grandfather为黑,uncle存在且为红,这里不论parent是grandfather的左孩子,还是右孩子,不论cur是parent的左孩子,还是右孩子则将parent,uncle改为黑,grandfather改为红,然后把grandfather当成cur,继续向上调整 ps:cur为当前节点,parent为父节点,grandfather为祖父节点,uncle为叔叔节点

 解析:cur、parent都为红,违反性质3;若把parent改为黑,符合性质3,但是左边少了一个黑节点,违反性质4;所以我们把grandfather、cur都改为相反色,这样一来通过grandfather的路径的黑节点数目没变,即符合3、4,若grandfather的父节点又是红的就又违反了3,所以经过上边操作后未结束,需把grandfather作为cur继续向上检索。   4、cur为红,parent为红,grandfather为黑,uncle不存在/uncle为黑,parent为grandfather的左孩子,cur为parent的左孩子,则进行右单旋转;相反,parent为grandfather的右孩子,cur为parent的右孩子,则进行左单旋转,parent变黑,grandfather变红
5、cur为红,parent为红,grandfather为黑,uncle不存在/uncle为黑parent为grandfather的左孩子,cur为parent的右孩子,则针对parent做左单旋转;相反,parent为grandfather的右孩子,cur为parent的左孩子,则针对parent做右单旋转,则转换成了情况4
红黑树左单旋转和右单旋转同AVL树左单旋转和右单旋转一样,详见http://blog.csdn.net/wanglelelihuanhuan/article/details/51863275
RBTree.h
#pragma once
enum Color

	RED,
	BLACK,
;

template<class K, class V>
struct RBTreeNode

	K _key;
	V _value;

	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	Color _color;
	RBTreeNode<K, V>(const K& key, const V& value)
		: _key(key)
		, _value(value)
		, _left(NULL)
		, _right(NULL)
		, _parent(NULL)
		, _color(RED)
	
;

template<class K, class V>
class RBTree

	typedef RBTreeNode<K, V> Node;
public:
	RBTree()
		:_root(NULL)
	
public:
	bool Insert(const K& key, const V& value)
	
		if (_root == NULL)
		
			_root = new Node(key, value);
			_root->_color = BLACK;
			return  true;
		
		//先插入节点
		Node* cur = _root;
		Node* parent = NULL;
		while (cur)
		
			if (cur->_key > key)
			
				parent = cur;
				cur = cur->_left;
			
			else if (cur->_key < key)
			
				parent = cur;
				cur = cur->_right;
			
			else
			
				return  false;
			
		
		cur = new Node(key, value);
		if (parent->_key > key)
		
			parent->_left = cur;
			cur->_parent = parent;
		
		else
		
			parent->_right = cur;
			cur->_parent = parent;
		
		//再调颜色
		while (cur != _root && parent->_color == RED)
		
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			
				//第一种情况,uncle存在且为红,进行变色处理
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_color == RED)
				
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;
					//然后把grandfather当成cur,继续向上调整。
					cur = grandfather;
					parent = cur->_parent;
				
				else  // uncle不存在/uncle存在为黑
				
					//第三种情况,左右双旋   '<'-->'/'-->'/\\'
					if (cur == parent->_right)
					
						RotateL(parent);
						swap(parent, cur);
					

					grandfather->_color = RED;
					parent->_color = BLACK;
					RotateR(grandfather);

					break;
				
			
			else //grandfather->_right == parent
			
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_color == RED)
				
					parent->_color = uncle->_color = BLACK;
					grandfather->_color = RED;

					cur = grandfather;
					parent = cur->_parent;
				
				else
				
					//右左双旋      '>'-->'\\'-->'/\\'
					if (cur == parent->_left)
					
						RotateR(parent);
						swap(parent, cur);
					

					grandfather->_color = RED;
					parent->_color = BLACK;
					RotateL(grandfather);

					break;
				
			
		
		_root->_color = BLACK;
		return  true;
	
	void InOrder()
	
		if (_root == NULL)
			return;
		_InOrder(_root);
		cout << endl;
	
	bool IsBalance()
	
		if (_root == NULL || (_root && _root->_color == RED))
			return false;
		//统计最左路径中黑色节点个数
		int k = 0;
		Node* cur = _root;
		while (cur)
		
			if (cur->_color == BLACK)
			
				++k;
			
			cur = cur->_left;
		
		int count = 0;
		return _IsBalance(_root, k, count);
	
public:
	void _InOrder(Node* root)
	
		if (root == NULL)
			return;

		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	
	bool _IsBalance(Node* root, const int k, int count)
	
		if (root->_color == RED && root->_parent->_color == RED)
		
			return false;
		
		if (root->_color == BLACK)
		
			++count;
		
		if (root->_left == NULL&&root->_right == NULL)
		
			if (k != count)
			
				cout << "黑色节点个数不相等" << root->_key << endl;
				return false;
			
			else
			
				cout << "平衡" << endl;
				return true;
			
		
		return _IsBalance(root->_left, k, count);
		return _IsBalance(root->_right, k, count);
	
	void RotateL(Node* parent)
	
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
		
			subRL->_parent = parent;
		
		subR->_left = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subR;

		if (ppNode == NULL)
		
			_root = subR;
			subR->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
			
				ppNode->_left = subR;
			
			else
			
				ppNode->_right = subR;
			
		
		subR->_parent = ppNode;
	
	void RotateR(Node* parent)
	
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
		
			subLR->_parent = parent;
		
		subL->_right = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;

		if (ppNode == NULL)
		
			_root = subL;
			subL->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
			
				ppNode->_left = subL;
			
			else
			
				ppNode->_right = subL;
			
		
		subL->_parent = ppNode;
	
protected:
	Node* _root;
;

void TestInsert()

	int arr[] =  16, 3, 7 ;
	RBTree<int, int> rb;
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); ++i)
	
		rb.Insert(arr[i], i);
		cout << arr[i] << endl;
		cout << "IsBalance  " << rb.IsBalance() << endl;
	
	cout << "IsBalance  " << rb.IsBalance() << endl;
	rb.InOrder();



Test.cpp
#include<iostream>
using namespace std;

#include"RBTree.h"

int main()

	TestInsert();
	return 0;



红黑树和AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删查改的时间复杂度都是O(lg(N)) 红黑树的不追求完全平衡,保证最长路径不超过最短路径的2倍,相对而言,降低了旋转的要求,所以性能跟AVL树差不多,但是红黑树实现更简单,所以实际运用中红黑树更多。

以上是关于红黑树的主要内容,如果未能解决你的问题,请参考以下文章

红黑树原理

红黑树

红黑树

红黑树总览

浅析红黑树

红黑树