Alink漫谈 : 如何划分训练数据集和测试数据集
Posted rossixyz
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Alink漫谈 : 如何划分训练数据集和测试数据集相关的知识,希望对你有一定的参考价值。
Alink漫谈(七) : 如何划分训练数据集和测试数据集
0x00 摘要
Alink 是阿里巴巴基于实时计算引擎 Flink 研发的新一代机器学习算法平台,是业界首个同时支持批式算法、流式算法的机器学习平台。本文将为大家展现Alink如何划分训练数据集和测试数据集。
0x01 训练数据集和测试数据集
两分法
一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。
三分法
但有时候模型的构建过程中也需要检验模型/辅助模型构建,这时会将训练数据再分为两个部分:1)训练数据;2)验证数据(Validation Data)。所以这种情况下会把数据分为三部分。
- 训练数据(Train Data):用于模型构建。
- 验证数据(Validation Data):可选,用于辅助模型构建,可以重复使用。
- 测试数据(Test Data):用于检测模型构建,此数据只在模型检验时使用,用于评估模型的准确率。绝对不允许用于模型构建过程,否则会导致过渡拟合。
Training set是用来训练模型或确定模型参数的,如ANN中权值等;
Validation set是用来做模型选择(model selection),即做模型的最终优化及确定,如ANN的结构;
Test set则纯粹是为了测试已经训练好的模型的推广能力。当然test set并不能保证模型的正确性,他只是说相似的数据用此模型会得出相似的结果。
实际应用
实际应用中,一般只将数据集分成两类,即training set 和test set,大多数文章并不涉及validation set。我们这里也不涉及。大家常用的sklearn的train_test_split函数就是将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。
0x02 Alink示例代码
首先我们给出示例代码,然后会深入剖析:
public class SplitExample {
public static void main(String[] args) throws Exception {
String url = "iris.csv";
String schema = "sepal_length double, sepal_width double, petal_length double, petal_width double, category string";
//这里是批处理
BatchOperator data = new CsvSourceBatchOp().setFilePath(url).setSchemaStr(schema);
SplitBatchOp spliter = new SplitBatchOp().setFraction(0.8);
spliter.linkFrom(data);
BatchOperator trainData = spliter;
BatchOperator testData = spliter.getSideOutput(0);
// 这里是流处理
CsvSourceStreamOp dataS = new CsvSourceStreamOp().setFilePath(url).setSchemaStr(schema);
SplitStreamOp spliterS = new SplitStreamOp().setFraction(0.4);
spliterS.linkFrom(dataS);
StreamOperator train_data = spliterS;
StreamOperator test_data = spliterS.getSideOutput(0);
}
}
0x03 批处理
SplitBatchOp是分割批处理的主要类,具体构建DAG的工作是在其linkFrom完成的。
总体思路比较简单:
- 假定有一个采样比例 fraction
- 将数据集分区,并行计算每个分区上的记录数
- 把每个分区上的记录数累积,得到所有记录总数 totCount
- 从上而下计算出一个采样总数:
numTarget = totCount * fraction
- 因为具体选择元素是在每个分区上做的,所以在每个分区上,分别计算出来这个分区应该采样的记录数,比如第n个分区上应采样记录数:
task_n_count * fraction
- 把这些分区 "应该采样的记录数" 累积,得出来从下而上计算出的采样总数:
totSelect = task_1_count * fraction + task_2_count * fraction + ... task_n_count * fraction
- numTarget 和 totSelect 可能不相等,所以随机决定把多出来的
numTarget - totSelect
加入到某一个task中。 - 在每个task上采样得到具体的记录。
3.1 得到记录数
如果要分割数据,首先必须知道数据集的记录数。比如这个DataSet的记录是1万个?还是十万个?因为数据集可能会很大,所以这一步操作也使用了并行处理,即把数据分区,然后通过mapPartition操作得到每一个分区上元素的数目。
DataSet<Tuple2<Integer, Long>> countsPerPartition = DataSetUtils.countElementsPerPartition(rows); //返回哪个task有哪些记录数
DataSet<long[]> numPickedPerPartition = countsPerPartition
.mapPartition(new CountInPartition(fraction)) //计算总数
.setParallelism(1)
.name("decide_count_of_each_partition");
因为每个分区就对应了一个task,所以我们也可以认为,这是获取了每个task的记录数。
具体工作是在 DataSetUtils.countElementsPerPartition 中完成的。返回类型是<index of this subtask, record count in this subtask>,比如3号task拥有30个记录。
public static <T> DataSet<Tuple2<Integer, Long>> countElementsPerPartition(DataSet<T> input) {
return input.mapPartition(new RichMapPartitionFunction<T, Tuple2<Integer, Long>>() {
@Override
public void mapPartition(Iterable<T> values, Collector<Tuple2<Integer, Long>> out) throws Exception {
long counter = 0;
for (T value : values) {
counter++; //计算本task的记录总数
}
out.collect(new Tuple2<>(getRuntimeContext().getIndexOfThisSubtask(), counter));
}
});
}
计算总数的工作其实是在下一阶段算子中完成的。
3.2 随机选取记录
接下来的工作主要是在 CountInPartition.mapPartition 完成的,其作用是随机决定每个task选择多少个记录。
这时候就不需要并行了,所以 .setParallelism(1)
3.2.1 得到总记录数
得到了每个分区记录数之后,我们遍历每个task的记录数,然后累积得到总记录数 totCount(就是从上而下计算出来的总数)。
public void mapPartition(Iterable<Tuple2<Integer, Long>> values, Collector<long[]> out) throws Exception {
long totCount = 0L;
List<Tuple2<Integer, Long>> buffer = new ArrayList<>();
for (Tuple2<Integer, Long> value : values) { //遍历输入的所有分区记录
totCount += value.f1; //f1是Long类型的记录数
buffer.add(value);
}
...
//后续代码在下面分析。
}
3.2.2 决定每个task选择记录数
然后CountInPartition.mapPartition函数中会随机决定每个task会选择的记录数。mapPartition的参数 Iterable<Tuple2<Integer, Long>> values 就是前一阶段的结果 :一个元祖<task id, 每个task的记录数目>。
把这些元祖结合在一起,记录在buffer这个列表中。
buffer = {ArrayList@8972} size = 4
0 = {Tuple2@8975} "(3,38)" // 3号task,其对应的partition记录数是38个。
1 = {Tuple2@8976} "(2,0)"
2 = {Tuple2@8977} "(0,38)"
3 = {Tuple2@8978} "(1,74)"
系统的task数目就是buffer大小。
int npart = buffer.size(); // num tasks
然后,根据”记录总数“计算出来 “随机训练数据的个数numTarget”。比如总数1万,应该随机分配20%,于是numTarget就应该是2千。这个数字以后会用到。
long numTarget = Math.round((totCount * fraction));
得到每个task的记录数目,比如是上面buffer中的 38,0,38,还是74,记录在 eachCount 中。
for (Tuple2<Integer, Long> value : buffer) {
eachCount[value.f0] = value.f1;
}
得到每个task中随机选中的训练记录数,记录在 eachSelect 中。就是每个task目前 “记录数字 * fraction”。比如3号task记录数是38个,应该选20%,则38*20%=8个。
然后把这些task自己的“随机训练记录数”再累加起来得到 totSelect(就是从下而上计算出来的总数)。
long totSelect = 0L;
for (int i = 0; i < npart; i++) {
eachSelect[i] = Math.round(Math.floor(eachCount[i] * fraction));
totSelect += eachSelect[i];
}
请注意,这时候 totSelect 和 之前计算的numTarget就有具体细微出入了,就是理论上的一个数字,但是我们 从上而下 计算 和 从下而上 计算,其结果可能不一样。通过下面我们可以看出来。
numTarget = all count * fraction
totSelect = task_1_count * fraction + task_2_count * fraction + ...
所以我们下一步要处理这个细微出入,就得到remain,这是"总体算出来的随机数目" numTarget 和 "从所有task选中的随机训练记录数累积" totSelect 的差。
if (totSelect < numTarget) {
long remain = numTarget - totSelect;
remain = Math.min(remain, totCount - totSelect);
如果刚好个数相等,则就正常分配。
if (remain == totCount - totSelect) {
如果数目不等,随机决定把"多出来的remain"加入到eachSelect数组中的随便一个记录上。
for (int i = 0; i < Math.min(remain, npart); i++) {
int taskId = shuffle.get(i);
while (eachSelect[taskId] >= eachCount[taskId]) {
taskId = (taskId + 1) % npart;
}
eachSelect[taskId]++;
}
最后给出所有信息
long[] statistics = new long[npart * 2];
for (int i = 0; i < npart; i++) {
statistics[i] = eachCount[i];
statistics[i + npart] = eachSelect[i];
}
out.collect(statistics);
// 我们这里是4核,所以前面四项是eachCount,后面是eachSelect
statistics = {long[8]@9003}
0 = 38 //eachCount
1 = 38
2 = 36
3 = 38
4 = 31 //eachSelect
5 = 31
6 = 28
7 = 30
这些信息是作为广播变量存储起来的,马上下面就会用到。
.withBroadcastSet(numPickedPerPartition, "counts")
3.2.3 每个task选择记录
CountInPartition.PickInPartition函数中会随机在每个task选择记录。
首先得到task数目 和 之前存储的广播变量(就是之前刚刚存储的)。
int npart = getRuntimeContext().getNumberOfParallelSubtasks();
List<long[]> bc = getRuntimeContext().getBroadcastVariable("counts");
分离count和select。
long[] eachCount = Arrays.copyOfRange(bc.get(0), 0, npart);
long[] eachSelect = Arrays.copyOfRange(bc.get(0), npart, npart * 2);
得到总task数目
int taskId = getRuntimeContext().getIndexOfThisSubtask();
得到自己 task 对应的 count, select
long count = eachCount[taskId];
long select = eachSelect[taskId];
添加本task对应的记录,随机洗牌打乱顺序
for (int i = 0; i < count; i++) {
shuffle.add(i); //就是把count内的数字加到数组
}
Collections.shuffle(shuffle, new Random(taskId)); //洗牌打乱顺序
// suffle举例
shuffle = {ArrayList@8987} size = 38
0 = {Integer@8994} 17
1 = {Integer@8995} 8
2 = {Integer@8996} 33
3 = {Integer@8997} 34
4 = {Integer@8998} 20
5 = {Integer@8999} 0
6 = {Integer@9000} 26
7 = {Integer@9001} 27
8 = {Integer@9002} 23
9 = {Integer@9003} 28
10 = {Integer@9004} 9
11 = {Integer@9005} 16
12 = {Integer@9006} 13
13 = {Integer@9007} 2
14 = {Integer@9008} 5
15 = {Integer@9009} 31
16 = {Integer@9010} 15
17 = {Integer@9011} 22
18 = {Integer@9012} 18
19 = {Integer@9013} 35
20 = {Integer@9014} 36
21 = {Integer@9015} 12
22 = {Integer@9016} 7
23 = {Integer@9017} 21
24 = {Integer@9018} 14
25 = {Integer@9019} 1
26 = {Integer@9020} 10
27 = {Integer@9021} 30
28 = {Integer@9022} 29
29 = {Integer@9023} 19
30 = {Integer@9024} 25
31 = {Integer@9025} 32
32 = {Integer@9026} 37
33 = {Integer@9027} 4
34 = {Integer@9028} 11
35 = {Integer@9029} 6
36 = {Integer@9030} 3
37 = {Integer@9031} 24
随机选择,把选择后的再排序回来
for (int i = 0; i < select; i++) {
selected[i] = shuffle.get(i); //这时候select看起来是按照顺序选择,但是实际上suffle里面已经是乱序
}
Arrays.sort(selected); //这次再排序
// selected举例,一共30个
selected = {int[30]@8991}
0 = 0
1 = 1
2 = 2
3 = 5
4 = 7
5 = 8
6 = 9
7 = 10
8 = 12
9 = 13
10 = 14
11 = 15
12 = 16
13 = 17
14 = 18
15 = 19
16 = 20
17 = 21
18 = 22
19 = 23
20 = 26
21 = 27
22 = 28
23 = 29
24 = 30
25 = 31
26 = 33
27 = 34
28 = 35
29 = 36
发送选择的数据
if (numEmits < selected.length && iRow == selected[numEmits]) {
out.collect(row);
numEmits++;
}
3.3 设置训练数据集和测试数据集
output是训练数据集,SideOutput是测试数据集。因为这两个数据集在Alink内部都是Table类型,所以直接使用了SQL算子 minusAll
来完成分割。
this.setOutput(out, in.getSchema());
this.setSideOutputTables(new Table[]{in.getOutputTable().minusAll(this.getOutputTable())});
0x04 流处理
训练是在SplitStreamOp类完成的,其通过linkFrom完成了模型的构建。
流处理依赖SplitStream 和 SelectTransformation 这两个类来完成分割流。具体并没有建立一个物理操作,而只是影响了上游算子如何与下游算子联系,如何选择记录。
SplitStream <Row> splited = in.getDataStream().split(new RandomSelectorOp(getFraction()));
首先,用RandomSelectorOp来随机决定输出时候选择哪个流。我们可以看到,这里就是随便起了"a", "b" 这两个名字而已。
class RandomSelectorOp implements OutputSelector <Row> {
private double fraction;
private Random random = null;
@Override
public Iterable <String> select(Row value) {
if (null == random) {
random = new Random(System.currentTimeMillis());
}
List <String> output = new ArrayList <String>(1);
output.add((random.nextDouble() < fraction ? "a" : "b")); //随机选取数字分配,随意起的名字
return output;
}
}
其次,得到那两个随机生成的流。
DataStream <Row> partA = splited.select("a");
DataStream <Row> partB = splited.select("b");
最后把这两个流分别设置为output和sideOutput。
this.setOutput(partA, in.getSchema()); //训练集
this.setSideOutputTables(new Table[]{
DataStreamConversionUtil.toTable(getMLEnvironmentId(), partB, in.getSchema())}); //验证集
最后返回本身,这时候SplitStreamOp拥有两个成员变量:
this.output就是训练集。
this.sideOutPut就是验证集。
return this;
0x05 参考
以上是关于Alink漫谈 : 如何划分训练数据集和测试数据集的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用caret包中的createDataPartition函数进行机器学习数据集划分划分训练集和测试集并指定训练测试比例