关于LIS的求法问题

Posted hhlya

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于LIS的求法问题相关的知识,希望对你有一定的参考价值。

LIS(最长上升子序列)

LIS是动态规划里面的一个基础的问题,接下来我们讨论一下它的求法。

解一:暴力枚举

我们需要求的是不下降的子序列,所以朴素的想法,当我们面临a[i]的状态,我们可以从a[1]开始枚举元素,每次去判断这个元素是否小于a[i],如果小于那我们就可以更新dp[i]的值为dp[j]+1(dp数组为i时的LIS长度),通过这样的状态转移去完成最大值的迭代,时间复杂度为n方。下面给出代码

    int a[MAXN], d[MAXN];
    int dp() {
      d[1] = 1;
      int ans = 1;
    for (int i = 2; i <= n; i++) {
      for (int j = 1; j < i; j++)
        if (a[j] <= a[i]) {
        d[i] = max(d[i], d[j] + 1);
        ans = max(ans, d[i]);
      }
  }
  return ans;
}

解二:Stl维护数组

我们想要的结果是一个数组的长度,那么我们可以考虑在外面建一个数组d来进行维护,首先d1=a1,然后我们去枚举每一个元素,如果这个元素大于d的末尾元素,我们应该如何操作?对的,直接插入末尾,这明显符合最长不下降的条件。当ai等于d的末尾元素的时候,显然,这个值是没有意义的,不做处理。当小于的时候,就是问题的关键所在,当这个元素小于末尾的元素,我们考虑这样的情况,如果这个元素小于末尾元素,却大于前面的所有元素,这时候更换末尾元素是不是没有影响,并且基于一个贪心的思路,我们在接下来的判断中有可能获取更长的长度,但如果这个元素不只是小于末尾,我们试着去替换会发生什么,对的,它对于长度来说并没有影响,这里注意一下,这个nlogn级别的做法并不能够用来提取子序列,只具备求长度的可行性。所以我们有了思路,那么在具体实现方面,我们使用STL里面的lower_bound去寻找插入的位置即可。下面给出代码实现。

#include<cstdio>
#include<algorithm>
using namespace std;

int a[40005];
int d[40005];

int main()
{
    int n;
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    if (n==0)  
    {
        printf("0
");
        return 0;
    }
    d[1]=a[1]; 
    int len=1;
    for (int i=2;i<=n;i++)
    {
        if (a[i]>=d[len]) d[++len]=a[i];  
        else 
        {
            int j=upper_bound(d+1,d+len+1,a[i])-d;  //找到第一个大于它的d的下标,如果是最长上升子序列,这里变成lower_bound 
            d[j]=a[i]; 
        }
    }
    printf("%d
",len);    
    return 0;
}

解三:线段树或者树状数组求法

基于前面的解法1的思路,我们可以用树状数组或者线段树来优化。原理这里就不解释了,我怕我太菜解释不清楚(逃)。下面给出代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,x,b[100100],a[100100];
ll c[100100],f[100100];
void upd(int x,ll v){
    for(;x<=n;x+=x&-x)
        c[x]=max(c[x],v);
}
ll ask(int x){
    ll cnt=0;
    for(;x>=1;x-=x&-x)
        cnt=max(cnt,c[x]);
    return cnt;
}

int main(){
    scanf("%d",&n);
    ll ans=0;
    memset(c,0,sizeof(c));
    for(int i=1;i<=n;i++){
        scanf("%d",&x);
        f[i]=ask(x)+1;
        upd(x,f[i]);
    }

    for(int i=1;i<=n;i++)
        ans=max(ans,f[i]);
    printf("%lld",ans);

    return 0;
}

以上是关于关于LIS的求法问题的主要内容,如果未能解决你的问题,请参考以下文章

UVa 10534 波浪子序列(快速求LIS)

apriori片段代码

关于∑n div i的求法

二叉树的遍历与深度求法

二叉树的遍历与深度求法

关于代码片段的时间复杂度