Numpy—— 线性代数相关函数
Posted long5683
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Numpy—— 线性代数相关函数相关的知识,希望对你有一定的参考价值。
- diag:以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)。
# numpy.linalg 中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西
# np.linalg.diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,
# 或将一维数组转换为方阵(非对角线元素为0)
e = np.diag(d)
f = np.diag(e)
print(‘d:
{}‘.format(d))
print(‘e:
{}‘.format(e))
print(‘f:
{}‘.format(f))
- dot:矩阵乘法。
# 矩阵b的第二维大小,必须等于矩阵c的第一维大小
d = b.dot(c) # 等价于 np.dot(b, c)
- trace:计算对角线元素的和。
g = np.trace(d)
- det:计算矩阵行列式。
h = np.linalg.det(d)
- eig:计算方阵的特征值和特征向量。
# eig,计算特征值和特征向量
# u为特征值,v为特征向量
u,v = np.linalg.eig(d)
- inv:计算方阵的逆。
tmp = np.random.rand(3, 3)
j = np.linalg.inv(tmp)
以上是关于Numpy—— 线性代数相关函数的主要内容,如果未能解决你的问题,请参考以下文章