UOJ 435 - Simple Tree
Posted ycx-akioi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UOJ 435 - Simple Tree相关的知识,希望对你有一定的参考价值。
UOJ题目页面传送门
有一棵大小为(n)的树,根为(1),节点(i)有一个权值(a_i)。支持(3)种(q)次操作:
- ( exttt1 x y v):令所有在路径(x o y)上的点的权值增加(v),保证(v=pm1);
- ( exttt2 x y):求路径(x o y)上权值(>0)的点数;
- ( exttt3 x):求子树(x)内权值(>0)的点数。
一眼重剖。于是转化为线性结构上的区间修改和区间查询。然后就不会了
看到区间查询排名,想到线段树套平衡树,但是这是区间修改,歇的了。
于是,分块是无所不能的(
注意到一个性质,由于(v=pm1),所以若(a_ileq-q)或(a_igeq q+1),则([a_i>0])永远无法改变。所以不妨等效地将(<-q)的赋成(-q),将(>q+1)的赋成(q+1),此时值域(mathrm O(q))。
考虑将线性结构(a)分成(sz1)块,每块(i)内维护后缀计数(cnT_i),(cnT_{i,j})表示块(i)内(geq j)的数的个数。再维护一个整体增加标记(add_i),表示该块被整体增加过多少。
-
区间修改:对于两边不满的块,暴力修改,每个数(pm1)的话(cnT)是可以(mathrm O(1))更新的(当然你重构我也不拦你)。对于中间的整块们,直接修改它们的整体增加标记。(mathrm O!left(sz1+dfrac n{sz1} ight))。
-
区间查询:对于两边不满的块,暴力计数,注意每个数真正的值是它在(a)数组中的值加上所在块的整体增加标记。对于中间的整块(i)们,调用后缀计数,将(cnT_{i,1-add_i})累加进结果即可。最终答案为两种结果加起来。(mathrm O!left(sz1+dfrac n{sz1} ight))。
此时令(sz1=lfloorsqrt n
floor),加上重剖的(log)即可(mathrm O(qsqrt nlog n))完美滚粗。当然往死里卡还是能卡过去的,我才不会告诉你我曾经就卡过去了呢(
接下来用出题人智商分析法。如果仅限于此,那么这题不就成了强行上树了?怎么还能成为集训队作业2018呢?所以这个重剖肯定有深藏不露之处。
事实上:无论是对于区间修改还是区间查询,对整块处理的时间复杂度显然是整块的个数(mathrm O!left(dfrac n{sz1} ight))。一次分块维护(mathrm O!left(dfrac n{sz1} ight)),那么一条链是不是就需要(mathrm O!left(dfrac n{sz1}log n ight))了呢?不,不是。因为重剖出来的区间们不会有交集,那么总的整块的个数依然是(mathrm O!left(dfrac n{sz1} ight))级别的。于是一条链的复杂度就是(mathrm O!left(sz1cdotlog n+dfrac n{sz1} ight))。注意到两项乘积依然为常数,令(sz1cdotlog n=dfrac n{sz1})解得(sz1=sqrt{dfrac n{log n}})(令(sz1=leftlfloorsqrt{dfrac n{log_2n}} ight floor)),此时总时间复杂度为(mathrm O(qsqrt{nlog n}))。
然鹅这样空间复杂度为(mathrm O(qsqrt{nlog n})),虽然ML很大但还是超过了一倍。注意到(cnT)的值们不会很大,用short
存可以说完美,不多不少刚刚好。
常数还是有点大,不过开个O3就AC了。
代码:
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
const int N=100000,QU=100000,DB_SZ=1300;
int n,qu;
bool ol;
vector<int> nei[N+1];
int fa[N+1],sz[N+1],wson[N+1],dep[N+1],top[N+1],dfn[N+1],nowdfn,mxdfn[N+1];
void dfs1(int x=1){//重剖预处理,下同
sz[x]=1;
for(int i=0;i<nei[x].size();i++){
int y=nei[x][i];
if(y==fa[x])continue;
fa[y]=x;
dep[y]=dep[x]+1;
dfs1(y);
sz[x]+=sz[y];
if(sz[y]>sz[wson[x]])wson[x]=y;
}
}
void dfs2(int x=1,int t=1){
dfn[x]=mxdfn[x]=++nowdfn;
top[x]=t;
if(wson[x])dfs2(wson[x],t),mxdfn[x]=mxdfn[wson[x]];
for(int i=0;i<nei[x].size();i++){
int y=nei[x][i];
if(y==fa[x]||y==wson[x])continue;
dfs2(y,y);mxdfn[x]=mxdfn[y];
}
}
int a[N+1];
struct dvdblk{//分块
int sz,sz1;
struct block{int l,r,add;short cnT[2*QU+2];}blk[DB_SZ];
#define l(p) blk[p].l
#define r(p) blk[p].r
#define cnT(p) blk[p].cnT
#define add(p) blk[p].add
void bldblk(int p,int l,int r){//构造一个块
l(p)=l;r(p)=r;
add(p)=0;
for(int i=l;i<=r;i++)cnT(p)[a[i]+qu]++;
for(int i=2*qu;~i;i--)cnT(p)[i]+=cnT(p)[i+1];
}
void init(){//分块初始化
sz1=max(1,min(n,int(sqrt(n/max(1.,log2(n))))));
// printf("sz1=%d
",sz1);
sz=(n+sz1-1)/sz1;
for(int i=1;i<=sz;i++)bldblk(i,(i-1)*sz1+1,min(n,i*sz1));
}
void _add(int l,int r,int v){//区间修改
int pl=(l+sz1-1)/sz1,pr=(r+sz1-1)/sz1;
if(pl==pr){//不满的块
for(int i=l;i<=r;i++)
if(v==-1){if(a[i]>-qu)cnT(pl)[a[i]-- +qu]--;}
else{if(a[i]<qu+1)cnT(pl)[++a[i]+qu]++;}
return;
}
//整块
for(int i=pl+1;i<pr;i++)add(i)+=v;
_add(l,r(pl),v);_add(l(pr),r,v);
}
int grt0(int l,int r){//区间查询
int pl=(l+sz1-1)/sz1,pr=(r+sz1-1)/sz1;
if(pl==pr){//不满的块
int res=0;
for(int i=l;i<=r;i++)res+=a[i]+add(pl)>0;
// cout<<l<<" "<<r<<":"<<res<<"
";
return res;
}
//整块
int res=0;
for(int i=pl+1;i<pr;i++)res+=cnT(i)[max(-qu,min(qu+1,1-add(i)))+qu];
return res+grt0(l,r(pl))+grt0(l(pr),r);
}
}db;
void add_chn(int x,int y,int v){//链修改
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
db._add(dfn[top[x]],dfn[x],v);
x=fa[top[x]];
}
if(dep[x]<dep[y])swap(x,y);
db._add(dfn[y],dfn[x],v);
}
int grt0_chn(int x,int y){//链查询
int res=0;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
res+=db.grt0(dfn[top[x]],dfn[x]);
x=fa[top[x]];
}
if(dep[x]<dep[y])swap(x,y);
return res+db.grt0(dfn[y],dfn[x]);
}
int grt0_subt(int x){return db.grt0(dfn[x],mxdfn[x]);}//子树查询
int main(){
// cout<<sizeof(db)/1024/1024;
cin>>n>>qu>>ol;
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
nei[x].pb(y);nei[y].pb(x);
}
dfs1();dfs2();//重剖
for(int i=1;i<=n;i++){
scanf("%d",a+dfn[i]);
a[dfn[i]]=max(-qu,min(qu+1,a[dfn[i]]));//限制值域
}
db.init();//分块初始化
int lasans=0;
for(int i=1;i<=qu;i++){
int tp,x,y,z;
scanf("%d%d",&tp,&x);ol&&(x^=lasans);
if(tp==1)scanf("%d%d",&y,&z),ol&&(y^=lasans),add_chn(x,y,z);
else if(tp==2)scanf("%d",&y),ol&&(y^=lasans),printf("%d
",lasans=grt0_chn(x,y));
else printf("%d
",lasans=grt0_subt(x));
}
return 0;
}
以上是关于UOJ 435 - Simple Tree的主要内容,如果未能解决你的问题,请参考以下文章
UOJ207共价大爷游长沙(Link-Cut Tree,随机化)
UOJ 274 清华集训2016温暖会指引我们前行 ——Link-Cut Tree
csharp C#代码片段 - 使类成为Singleton模式。 (C#4.0+)https://heiswayi.github.io/2016/simple-singleton-pattern-us
[Coding Made Simple] Optimal Binary Search Tree
ZOJ 3686 A Simple Tree Problem(线段树)
C++ 映射错误,带有结构和方法,无法将字符串转换为 _Tree_iterator<std::_Tree_val<std::_Tree_simple_types< 等等