操作系统-特权级与内核安全示例

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了操作系统-特权级与内核安全示例相关的知识,希望对你有一定的参考价值。

Q:通常情况下选择子中的RPL与对应描述符中的DPL相同,那么是否可以取缔RPL?
RPL是保证内核数据安全的关键要素之一;在内核代码中有决定性作用,绝对不能取缔

A.获取操作系统的内核

技术图片
该实验主要通过调用门调用将内核数据进行打印
技术图片技术图片
具体的实现代码如下

%include "inc.asm"

org 0x9000

jmp ENTRY_SEGMENT

[section .gdt]
; GDT definition
;                                      段基址,       段界限,             段属性
GDT_ENTRY            :     Descriptor    0,            0,                0
CODE32_DESC          :     Descriptor    0,    Code32SegLen - 1,         DA_C + DA_32 + DA_DPL3
VIDEO_DESC           :     Descriptor 0xB8000,     0x07FFF,              DA_DRWA + DA_32 + DA_DPL3
DATA32_KERNEL_DESC   :     Descriptor    0,    Data32KernelSegLen - 1,   DA_DRW + DA_32 + DA_DPL0  
DATA32_USER_DESC     :     Descriptor    0,    Data32UserSegLen - 1,     DA_DRW + DA_32 + DA_DPL3  
STACK32_KERNEL_DESC  :     Descriptor    0,     TopOfKernelStack32,      DA_DRW + DA_32 + DA_DPL0
STACK32_USER_DESC    :     Descriptor    0,     TopOfUserStack32,        DA_DRW + DA_32 + DA_DPL3
TSS_DESC             :     Descriptor    0,       TSSLen - 1,            DA_386TSS + DA_DPL0
FUNCTION_DESC        :     Descriptor    0,   FunctionSegLen - 1,        DA_C + DA_32 + DA_DPL0;内核函数段
; Call Gate
;                                                  选择子,                 偏移,          参数个数,      属性
FUNC_GETKERNELDATA_DESC :    Gate             FunctionSelector,       GetKernelData,       0,         DA_386CGate + DA_DPL3
; GDT end

GdtLen    equ   $ - GDT_ENTRY

GdtPtr:
          dw   GdtLen - 1
          dd   0

; GDT Selector
Code32Selector         equ (0x0001 << 3) + SA_TIG + SA_RPL3
VideoSelector          equ (0x0002 << 3) + SA_TIG + SA_RPL3
KernelData32Selector   equ (0x0003 << 3) + SA_TIG + SA_RPL0
UserData32Selector     equ (0x0004 << 3) + SA_TIG + SA_RPL3
KernelStack32Selector  equ (0x0005 << 3) + SA_TIG + SA_RPL0
UserStack32Selector    equ (0x0006 << 3) + SA_TIG + SA_RPL3
TSSSelector            equ (0x0007 << 3) + SA_TIG + SA_RPL0
FunctionSelector       equ (0x0008 << 3) + SA_TIG + SA_RPL0
; Gate Selector
GetKernelDataSelector  equ (0x0009 << 3) + SA_TIG + SA_RPL3
; end of [section .gdt]

TopOfStack16    equ 0x7c00

[section .s16]
[bits 16]
ENTRY_SEGMENT:
    mov ax, cs
    mov ds, ax
    mov es, ax
    mov ss, ax
    mov sp, TopOfStack16

    ; initialize GDT for 32 bits code segment
    mov esi, CODE32_SEGMENT
    mov edi, CODE32_DESC

    call InitDescItem

    mov esi, DATA32_KERNEL_SEGMENT
    mov edi, DATA32_KERNEL_DESC

    call InitDescItem

    mov esi, DATA32_USER_SEGMENT
    mov edi, DATA32_USER_DESC

    call InitDescItem

    mov esi, STACK32_KERNEL_SEGMENT
    mov edi, STACK32_KERNEL_DESC

    call InitDescItem

    mov esi, STACK32_USER_SEGMENT
    mov edi, STACK32_USER_DESC

    call InitDescItem

    mov esi, FUNCTION_SEGMENT
    mov edi, FUNCTION_DESC

    call InitDescItem

    mov esi, TSS_SEGMENT
    mov edi, TSS_DESC

    call InitDescItem

    ; initialize GDT pointer struct
    mov eax, 0
    mov ax, ds
    shl eax, 4
    add eax, GDT_ENTRY
    mov dword [GdtPtr + 2], eax

    ; 1. load GDT
    lgdt [GdtPtr]

    ; 2. close interrupt
    cli 

    ; 3. open A20
    in al, 0x92
    or al, 00000010b
    out 0x92, al

    ; 4. enter protect mode
    mov eax, cr0
    or eax, 0x01
    mov cr0, eax

    ; 5. load TSS
    mov ax, TSSSelector
    ltr ax

    ; 6. jump to 32 bits code
    ;jmp word Code32Selector : 0
    push UserStack32Selector
    push TopOfUserStack32
    push Code32Selector    
    push 0                 
    retf

; esi    --> code segment label
; edi    --> descriptor label
InitDescItem:
    push eax

    mov eax, 0
    mov ax, cs
    shl eax, 4
    add eax, esi
    mov word [edi + 2], ax
    shr eax, 16
    mov byte [edi + 4], al
    mov byte [edi + 7], ah

    pop eax

    ret

[section .kdat]
[bits 32]
DATA32_KERNEL_SEGMENT:
    KDAT               db  "Kernel Data", 0
    KDAT_LEN           equ $ - KDAT
    KDAT_OFFSET        equ KDAT - $$

Data32KernelSegLen equ $ - DATA32_KERNEL_SEGMENT

[section .udat]
[bits 32]
DATA32_USER_SEGMENT:
    UDAT               times 16 db 0
    UDAT_LEN           equ $ - UDAT
    UDAT_OFFSET        equ UDAT - $$

Data32UserSegLen equ $ - DATA32_USER_SEGMENT

[section .tss]
[bits 32]
TSS_SEGMENT:
        dd    0
        dd    TopOfKernelStack32      ; 0
        dd    KernelStack32Selector   ;
        dd    0                       ; 1
        dd    0                       ;
        dd    0                       ; 2
        dd    0                       ;
        times 4 * 18 dd 0
        dw    0
        dw    $ - TSS_SEGMENT + 2
        db    0xFF

TSSLen    equ    $ - TSS_SEGMENT

[section .s32]
[bits 32]
CODE32_SEGMENT:
    mov ax, VideoSelector
    mov gs, ax

    mov ax, UserData32Selector
    mov es, ax

    mov di, UDAT_OFFSET

    call GetKernelDataSelector : 0

    mov ax, UserData32Selector   ; eip ==> 0x17
    mov ds, ax

    mov ebp, UDAT_OFFSET
    mov bx, 0x0C
    mov dh, 12
    mov dl, 33

    call PrintString

    jmp $

; ds:ebp    --> string address
; bx        --> attribute
; dx        --> dh : row, dl : col
PrintString:
    push ebp
    push eax
    push edi
    push cx
    push dx

print:
    mov cl, [ds:ebp]
    cmp cl, 0
    je end
    mov eax, 80
    mul dh
    add al, dl
    shl eax, 1
    mov edi, eax
    mov ah, bl
    mov al, cl
    mov [gs:edi], ax
    inc ebp
    inc dl
    jmp print

end:
    pop dx
    pop cx
    pop edi
    pop eax
    pop ebp

    ret

Code32SegLen    equ    $ - CODE32_SEGMENT

[section .func]
[bits 32]
FUNCTION_SEGMENT:

; es:di --> data buffer 
GetKernelDataFunc:  
    mov ax, KernelData32Selector
    mov ds, ax

    mov si, KDAT_OFFSET

    mov cx, KDAT_LEN

    call KMemCpy

    retf

; ds:si --> source
; es:di --> destination
; cx    --> length
KMemCpy:
    cmp si, di
    ja btoe
    add si, cx
    add di, cx
    dec si
    dec di
    jmp etob
btoe:
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    inc si
    inc di
    dec cx
    jmp btoe
etob: 
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    dec si
    dec di
    dec cx
    jmp etob
done:   
    ret   

GetKernelData    equ   GetKernelDataFunc - $$
FunctionSegLen    equ   $ - FUNCTION_SEGMENT

[section .kgs]
[bits 32]
STACK32_KERNEL_SEGMENT:
    times 256 db 0

Stack32KernelSegLen equ $ - STACK32_KERNEL_SEGMENT
TopOfKernelStack32  equ Stack32KernelSegLen - 1

[section .ugs]
[bits 32]
STACK32_USER_SEGMENT:
    times 256 db 0c

Stack32UserSegLen equ $ - STACK32_USER_SEGMENT
TopOfUserStack32  equ Stack32UserSegLen - 1

实现结果
技术图片
从结果中可以看到内核数据被用户进行了拷贝,导致内核数据不安全

B.对上述出现的错误进行改进

初步的解决方法-提出一个检查函数
1.获取段寄存器中RPL的值
2.判断RPL的值是否为SA_RPL0;true则为检查通过,可以继续访问数据,如果为false,特权级较低,出发异常
具体实现是在[section .func] [bits 32]中定义一个检查函数,并在拷贝之前将其进行调用,对RPL的值进行判断
代码如下

[section .func]
[bits 32]
FUNCTION_SEGMENT:

; es:di --> data buffer 
GetKernelDataFunc:  
    mov cx, [esp + 4]
    and cx, 0x0003
    mov ax, es
    and ax, 0xFFFC
    or  ax, cx
    mov es, ax

    mov ax, KernelData32Selector
    mov ds, ax

    mov si, KDAT_OFFSET

    mov cx, KDAT_LEN

    call KMemCpy

    retf

; ds:si --> source
; es:di --> destination
; cx    --> length
KMemCpy:
    mov ax, es

    call CheckRPL;进行调用

    cmp si, di
    ja btoe
    add si, cx
    add di, cx
    dec si
    dec di
    jmp etob
btoe:
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    inc si
    inc di
    dec cx
    jmp btoe
etob: 
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    dec si
    dec di
    dec cx
    jmp etob
done:   
    ret   

; ax --> selector value
;检查函数
CheckRPL:
    and ax, 0x0003;进行与操作
    cmp ax, SA_RPL0;进行比较操作
    jz valid;进行判断跳转

    mov ax, 0
    mov fs, ax
    mov byte [fs:0], 0;触发异常

代码运行结果
技术图片
从运行结果可以看出,代码没有对内核数据进行拷贝,同时检查函数起到作用, 对RPL的值进行判断,并触发异常进行打印。但是对用户的选择子RPL的值进行修改伪造,将其改为0,又可以将内核数据进行拷贝。

C.用户程序可以通过伪造的选择子中的RPL的值,从而绕开安全检查的机制,在这里需要提出新的解决方案

1.在栈中获取函数远调用前CS寄存器的值(请求者)
2.从之前CS寄存器的值获取RPL
3.用RPL更新到数据缓冲区对应的段寄存器中
4.实验检查函数CheckRPL对段寄存器进行安全检查
技术图片
代码

%include "inc.asm"

org 0x9000

jmp ENTRY_SEGMENT

[section .gdt]
; GDT definition
;                                      段基址,       段界限,             段属性
GDT_ENTRY            :     Descriptor    0,            0,                0
CODE32_DESC          :     Descriptor    0,    Code32SegLen - 1,         DA_C + DA_32 + DA_DPL3
VIDEO_DESC           :     Descriptor 0xB8000,     0x07FFF,              DA_DRWA + DA_32 + DA_DPL3
DATA32_KERNEL_DESC   :     Descriptor    0,    Data32KernelSegLen - 1,   DA_DRW + DA_32 + DA_DPL0  
DATA32_USER_DESC     :     Descriptor    0,    Data32UserSegLen - 1,     DA_DRW + DA_32 + DA_DPL3  
STACK32_KERNEL_DESC  :     Descriptor    0,     TopOfKernelStack32,      DA_DRW + DA_32 + DA_DPL0
STACK32_USER_DESC    :     Descriptor    0,     TopOfUserStack32,        DA_DRW + DA_32 + DA_DPL3
TSS_DESC             :     Descriptor    0,       TSSLen - 1,            DA_386TSS + DA_DPL0
FUNCTION_DESC        :     Descriptor    0,   FunctionSegLen - 1,        DA_C + DA_32 + DA_DPL0;内核函数段
; Call Gate
;                                                  选择子,                 偏移,          参数个数,      属性
FUNC_GETKERNELDATA_DESC :    Gate             FunctionSelector,       GetKernelData,       0,         DA_386CGate + DA_DPL3
; GDT end

GdtLen    equ   $ - GDT_ENTRY

GdtPtr:
          dw   GdtLen - 1
          dd   0

; GDT Selector
Code32Selector         equ (0x0001 << 3) + SA_TIG + SA_RPL3
VideoSelector          equ (0x0002 << 3) + SA_TIG + SA_RPL3
KernelData32Selector   equ (0x0003 << 3) + SA_TIG + SA_RPL0
UserData32Selector     equ (0x0004 << 3) + SA_TIG + SA_RPL3
KernelStack32Selector  equ (0x0005 << 3) + SA_TIG + SA_RPL0
UserStack32Selector    equ (0x0006 << 3) + SA_TIG + SA_RPL3
TSSSelector            equ (0x0007 << 3) + SA_TIG + SA_RPL0
FunctionSelector       equ (0x0008 << 3) + SA_TIG + SA_RPL0
; Gate Selector
GetKernelDataSelector  equ (0x0009 << 3) + SA_TIG + SA_RPL3
; end of [section .gdt]

TopOfStack16    equ 0x7c00

[section .s16]
[bits 16]
ENTRY_SEGMENT:
    mov ax, cs
    mov ds, ax
    mov es, ax
    mov ss, ax
    mov sp, TopOfStack16

    ; initialize GDT for 32 bits code segment
    mov esi, CODE32_SEGMENT
    mov edi, CODE32_DESC

    call InitDescItem

    mov esi, DATA32_KERNEL_SEGMENT
    mov edi, DATA32_KERNEL_DESC

    call InitDescItem

    mov esi, DATA32_USER_SEGMENT
    mov edi, DATA32_USER_DESC

    call InitDescItem

    mov esi, STACK32_KERNEL_SEGMENT
    mov edi, STACK32_KERNEL_DESC

    call InitDescItem

    mov esi, STACK32_USER_SEGMENT
    mov edi, STACK32_USER_DESC

    call InitDescItem

    mov esi, FUNCTION_SEGMENT
    mov edi, FUNCTION_DESC

    call InitDescItem

    mov esi, TSS_SEGMENT
    mov edi, TSS_DESC

    call InitDescItem

    ; initialize GDT pointer struct
    mov eax, 0
    mov ax, ds
    shl eax, 4
    add eax, GDT_ENTRY
    mov dword [GdtPtr + 2], eax

    ; 1. load GDT
    lgdt [GdtPtr]

    ; 2. close interrupt
    cli 

    ; 3. open A20
    in al, 0x92
    or al, 00000010b
    out 0x92, al

    ; 4. enter protect mode
    mov eax, cr0
    or eax, 0x01
    mov cr0, eax

    ; 5. load TSS
    mov ax, TSSSelector
    ltr ax

    ; 6. jump to 32 bits code
    ;jmp word Code32Selector : 0
    push UserStack32Selector
    push TopOfUserStack32
    push Code32Selector    
    push 0                 
    retf

; esi    --> code segment label
; edi    --> descriptor label
InitDescItem:
    push eax

    mov eax, 0
    mov ax, cs
    shl eax, 4
    add eax, esi
    mov word [edi + 2], ax
    shr eax, 16
    mov byte [edi + 4], al
    mov byte [edi + 7], ah

    pop eax

    ret

[section .kdat]
[bits 32]
DATA32_KERNEL_SEGMENT:
    KDAT               db  "Kernel Data", 0
    KDAT_LEN           equ $ - KDAT
    KDAT_OFFSET        equ KDAT - $$

Data32KernelSegLen equ $ - DATA32_KERNEL_SEGMENT

[section .udat]
[bits 32]
DATA32_USER_SEGMENT:
    UDAT               times 16 db 0
    UDAT_LEN           equ $ - UDAT
    UDAT_OFFSET        equ UDAT - $$

Data32UserSegLen equ $ - DATA32_USER_SEGMENT

[section .tss]
[bits 32]
TSS_SEGMENT:
        dd    0
        dd    TopOfKernelStack32      ; 0
        dd    KernelStack32Selector   ;
        dd    0                       ; 1
        dd    0                       ;
        dd    0                       ; 2
        dd    0                       ;
        times 4 * 18 dd 0
        dw    0
        dw    $ - TSS_SEGMENT + 2
        db    0xFF

TSSLen    equ    $ - TSS_SEGMENT

[section .s32]
[bits 32]
CODE32_SEGMENT:
    mov ax, VideoSelector
    mov gs, ax

    mov ax, UserData32Selector
    mov es, ax

    mov di, UDAT_OFFSET

    call GetKernelDataSelector : 0

    mov ax, UserData32Selector   ; eip ==> 0x17
    mov ds, ax

    mov ebp, UDAT_OFFSET
    mov bx, 0x0C
    mov dh, 12
    mov dl, 33

    call PrintString

    jmp $

; ds:ebp    --> string address
; bx        --> attribute
; dx        --> dh : row, dl : col
PrintString:
    push ebp
    push eax
    push edi
    push cx
    push dx

print:
    mov cl, [ds:ebp]
    cmp cl, 0
    je end
    mov eax, 80
    mul dh
    add al, dl
    shl eax, 1
    mov edi, eax
    mov ah, bl
    mov al, cl
    mov [gs:edi], ax
    inc ebp
    inc dl
    jmp print

end:
    pop dx
    pop cx
    pop edi
    pop eax
    pop ebp

    ret

Code32SegLen    equ    $ - CODE32_SEGMENT

[section .func]
[bits 32]
FUNCTION_SEGMENT:

; es:di --> data buffer 
GetKernelDataFunc:  
    mov cx, [esp + 4]
    and cx, 0x0003
    mov ax, es
    and ax, 0xFFFC
    or  ax, cx
    mov es, ax

    mov ax, KernelData32Selector
    mov ds, ax

    mov si, KDAT_OFFSET

    mov cx, KDAT_LEN

    call KMemCpy

    retf

; ds:si --> source
; es:di --> destination
; cx    --> length
KMemCpy:
    mov ax, es

    call CheckRPL;进行调用

    cmp si, di
    ja btoe
    add si, cx
    add di, cx
    dec si
    dec di
    jmp etob
btoe:
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    inc si
    inc di
    dec cx
    jmp btoe
etob: 
    cmp cx, 0
    jz done
    mov al, [ds:si]
    mov byte [es:di], al
    dec si
    dec di
    dec cx
    jmp etob
done:   
    ret   

; ax --> selector value
;检查函数
CheckRPL:
    and ax, 0x0003;进行与操作
    cmp ax, SA_RPL0;进行比较操作
    jz valid;进行判断跳转

    mov ax, 0
    mov fs, ax
    mov byte [fs:0], 0;触发异常

valid:
    ret    
GetKernelData    equ   GetKernelDataFunc - $$
FunctionSegLen    equ   $ - FUNCTION_SEGMENT

[section .kgs]
[bits 32]
STACK32_KERNEL_SEGMENT:
    times 256 db 0

Stack32KernelSegLen equ $ - STACK32_KERNEL_SEGMENT
TopOfKernelStack32  equ Stack32KernelSegLen - 1

[section .ugs]
[bits 32]
STACK32_USER_SEGMENT:
    times 256 db 0

Stack32UserSegLen equ $ - STACK32_USER_SEGMENT
TopOfUserStack32  equ Stack32UserSegLen - 1

首先通过反编译在call GetKernelDataSelector : 0跳转处设置断点,接下来对通用寄存器eip寄存器进行查看,由92a8到92af之间的差值为7,可以推断mov ax, UserData32Selector ; eip ==> 0x17,该处是返回地址。同时0x17会入栈,cs也会入栈,对寄存器进行查看,此时cs寄存器为0x0b,接下来对栈顶的6个字节进行查看,发现0x17与cs寄存器都入栈,再继续操作,触发异常,过程如图所示
技术图片技术图片技术图片技术图片

小结

1.RPL是保证内核数据安全的关键要素之一
2.内核代码可通过追踪真实请求者特权级判断操作合法性
3.进行函数远调用时,真实请求者的选择子就会存储于栈中
4.通过提取真实特权级能够保证内核数据安全

以上是关于操作系统-特权级与内核安全示例的主要内容,如果未能解决你的问题,请参考以下文章

CPU Rings, Privilege, and Protection.CPU的运行环, 特权级与保护

Linux内核功能介绍及如何使用保护您的网页安全

Linux内核功能介绍及如何使用保护您的网页安全

DockerDocker安全容器资源控制(CPU内存磁盘IO)安全加固(lxcfs特权白名单)

Golang源码学习:调度逻辑系统调用

Golang源码学习:调度逻辑系统调用