负载均衡汇总

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了负载均衡汇总相关的知识,希望对你有一定的参考价值。

负载均衡学习笔记
一、总体介绍
1.1 定义
1.1.1 Load balancing
Load Balancing is the process of distributing data across disparate services to provide redundancy, reliability, and improve performance.
The entire intent of load balancing is to create a system that virtualizes the "service" from the physical servers that actually run that service. A more basic definition is to balance the load across a bunch of physical servers and make those servers look like one great big server to the outside world. There are many reasons to do this, but the primary drivers can be summarized as "scalability," "high availability," and "predictability."
Scalability is the capability of dynamically, or easily, adapting to increased load without impacting existing performance. Service virtualization presented an interesting opportunity for scalability; if the service, or the point of user contact, was separated from the actual servers, scaling of the application would simply mean adding more servers or cloud resources which would not be visible to the end user.
High Availability (HA) is the capability of a site to remain available and accessible even during the failure of one or more systems. Service virtualization also presented an opportunity for HA; if the point of user contact was separated from the actual servers, the failure of an individual server would not render the entire application unavailable. Predictability is a little less clear as it represents pieces of HA as well as some lessons learned along the way. However, predictability can best be described as the capability of having confidence and control in how the services are being delivered and when they are being delivered in regards to availability, performance, and so on.
1.1.2 Load balancer
A load balancer is a device that acts as a reverse proxy and distributes network or application traffic across a number of servers.
技术分享
Load balancers are used to increase capacity (concurrent users) and reliability of applications. They improve the overall performance of applications by decreasing the burden on servers associated with managing and maintaining application and network sessions, as well as by performing application-specific tasks.
Load balancers are generally grouped into two categories: Layer 4 and Layer 7. Layer 4 load balancers act upon data found in network and transport layer protocols (IP, TCP, FTP, UDP). Layer 7 load balancers distribute requests based upon data found in application layer protocols such as HTTP.
Requests are received by both types of load balancers and they are distributed to a particular server based on a configured algorithm. Some industry standard algorithms are:
? Round robin
? Weighted round robin
? Least connections
? Least response time
Layer 7 load balancers can further distribute requests based on application specific data such as HTTP headers, cookies, or data within the application message itself, such as the value of a specific parameter.
Load balancers ensure reliability and availability by monitoring the "health" of applications and only sending requests to servers and applications that can respond in a timely manner.
1.2 均衡种类
1.2.1 四层
所谓四层就是基于IP+端口的负载均衡;七层就是基于URL等应用层信息的负载均衡;同理,还有基于MAC地址的二层负载均衡和基于IP地址的三层负载均衡。换句话说,二层负载均衡会通过一个虚拟MAC地址接收请求,然后再分配到真实的MAC地址;三层负载均衡会通过一个虚拟IP地址接收请求,然后再分配到真实的IP地址;四层通过虚拟IP+端口接收请求,然后再分配到真实的服务器;七层通过虚拟的URL或主机名接收请求,然后再分配到真实的服务器。
1.2.2 七层
所谓的四到七层负载均衡,就是在对后台的服务器进行负载均衡时,依据四层的信息或七层的信息来决定怎么样转发流量。比如四层的负载均衡,就是通过发布三层的IP地址(VIP),然后加四层的端口号,来决定哪些流量需要做负载均衡,对需要处理的流量进行NAT处理,转发至后台服务器,并记录下这个TCP或者UDP的流量是由哪台服务器处理,后续这个连接的所有流量都同样转发到同一台服务器处理。七层的负载均衡,就是在四层的基础上(没有四层是绝对不可能有七层的),再考虑应用层的特征,比如同一个Web服务器的负载均衡,除了根据VIP加80端口辨别是否需要处理的流量,还可根据七层的URL、浏览器类别、语言来决定是否要进行负载均衡。举个例子,如果你的Web服务器分成两组,一组是中文语言的,一组是英文语言的,那么七层负载均衡就可以当用户来访问你的域名时,自动辨别用户语言,然后选择对应的语言服务器组进行负载均衡处理
1.2.3 负载均衡器
1.  负载均衡器通常称为四层交换机或七层交换机。四层交换机主要分析IP层及TCP/UDP层,实现四层流量负载均衡。七层交换机除了支持四层负载均衡以外,还有分析应用层的信息,如HTTP协议URI或Cookie信息。
2.  负载均衡分为L4 switch(四层交换),即在OSI第4层工作,就是TCP层。此种Load Balance不理解应用协议(如HTTP/FTP/mysql等等)。例子:LVS,F5。
3.  另一种叫做L7 switch(七层交换),OSI的最高层,应用层。此时,该Load Balancer能理解应用协议。例子: haproxy,MySQL Proxy。
注意:上面的很多Load Balancer既可以做四层交换,也可以做七层交换。
1.2.4 区别
1.2.4.1 技术原理
所谓四层负载均衡,也就是主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。以常见的TCP为例,负载均衡设备在接收到第一个来自客户端的SYN 请求时,即通过上述方式选择一个最佳的服务器,并对报文中目标IP地址进行修改(改为后端服务器IP),直接转发给该服务器。TCP的连接建立,即三次握手是客户端和服务器直接建立的,负载均衡设备只是起到一个类似路由器的转发动作。在某些部署情况下,为保证服务器回包可以正确返回给负载均衡设备,在转发报文的同时可能还会对报文原来的源地址进行修改。
技术分享
所谓七层负载均衡,也称为“内容交换”,也就是主要通过报文中的真正有意义的应用层内容,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。
以常见的TCP为例,负载均衡设备如果要根据真正的应用层内容再选择服务器,只能先代理最终的服务器和客户端建立连接(三次握手)后,才可能接受到客户端发送的真正应用层内容的报文,然后再根据该报文中的特定字段,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。负载均衡设备在这种情况下,更类似于一个代理服务器。负载均衡和前端的客户端以及后端的服务器会分别建立TCP连接。所以从这个技术原理上来看,七层负载均衡明显的对负载均衡设备的要求更高,处理七层的能力也必然会低于四层模式的部署方式。
1.2.4.2 应用场景
七层应用负载的好处,是使得整个网络更智能化。例如访问一个网站的用户流量,可以通过七层的方式,将对图片类的请求转发到特定的图片服务器并可以使用缓存技术;将对文字类的请求可以转发到特定的文字服务器并可以使用压缩技术。当然这只是七层应用的一个小案例,从技术原理上,这种方式可以对客户端的请求和服务器的响应进行任意意义上的修改,极大的提升了应用系统在网络层的灵活性。很多在后台,例如nginx或者Apache上部署的功能可以前移到负载均衡设备上,例如客户请求中的Header重写,服务器响应中的关键字过滤或者内容插入等功能。
另外一个常常被提到功能就是安全性。网络中最常见的SYN Flood攻击,即黑客控制众多源客户端,使用虚假IP地址对同一目标发送SYN攻击,通常这种攻击会大量发送SYN报文,耗尽服务器上的相关资源,以达到Denial of Service(DoS)的目的。从技术原理上也可以看出,四层模式下这些SYN攻击都会被转发到后端的服务器上;而七层模式下这些SYN攻击自然在负载均衡设备上就截止,不会影响后台服务器的正常运营。另外负载均衡设备可以在七层层面设定多种策略,过滤特定报文,例如SQL Injection等应用层面的特定攻击手段,从应用层面进一步提高系统整体安全。
现在的七层负载均衡,主要还是着重于应用HTTP协议,所以其应用范围主要是众多的网站或者内部信息平台等基于B/S开发的系统。 四层负载均衡则对应其他TCP应用,例如基于C/S开发的ERP等系统。
技术分享
 
二、LVS负载均衡
2.1 概述
LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统。
一般来说,LVS集群采用三层结构,其主要组成部分为:
A、负载调度器(load balancer),它是整个集群对外面的前端机,负责将客户的请求发送到一组服务器上执行,而客户认为服务是来自一个IP地址(我们可称之为虚拟IP地址)上的。调度器是服务器集群系统的唯一入口点(Single Entry Point),它可以采用IP负载均衡技术、基于内容请求分发技术或者两者相结合。
B、服务器池(server pool),是一组真正执行客户请求的服务器,执行的服务有WEB、MAIL、FTP和DNS等。
C、共享存储(shared storage),它为服务器池提供一个共享的存储区,这样很容易使得服务器池拥有相同的内容,提供相同的服务。
在IP负载均衡技术中,需要服务器池拥有相同的内容提供相同的服务。当客户请求到达时,调度器只根据服务器负载情况和设定的调度算法从服务器池中选出一个服务器,将该请求转发到选出的服务器,并记录这个调度;当这个请求的其他报文到达,也会被转发到前面选出的服务器。在基于内容请求分发技术中,服务器可以提供不同的服务,当客户请求到达时,调度器可根据请求的内容选择服务器执行请求。因为所有的操作都是在Linux操作系统核心空间中完成的,它的调度开销很小,所以它具有很高的吞吐率。服务器池的结点数目是可变的。当整个系统收到的负载超过目前所有结点的处理能力时,可以在服务器池中增加服务器来满足不断增长的请求负载。
2.2 IP负载均衡
在分析服务器集群实现虚拟网络服务的相关技术上,详细描述了LVS集群中实现的三种IP负载均衡技术VS/NAT、VS/TUN、VS/DR的工作原理,以及它们的优缺点。
这里在分析服务器集群实现虚拟网络服务的相关技术上,详细描述了LVS集群中实现的三种IP负载均衡技术:VS/NATVS/TUNVS/DR的工作原理,以及它们的优缺点。
2.2.1 简述LVS负载均衡
IP负载均衡技术是在负载调度器的实现技术中效率最高的。在已有的IP负载均衡技术中,主要有通过网络地址转换NAT(Network Address Translation)将一组服务器构成一个高性能的、高可用的虚拟服务器,称之为VS/NAT技术(Virtual Server via Network Address Translation)。在分析VS/NAT的缺点和网络服务的非对称性的基础上,提出了通过IP隧道实现虚拟服务器的方法VS/TUN (Virtual Server via IP Tunneling),和通过直接路由实现虚拟服务器的方法VS/DR(Virtual Server via Direct Routing),它们可以极大地提高系统的伸缩性。VS/NAT、VS/TUN和VS/DR技术LVS集群中实现的三种IP负载均衡技术,后面将详细描述它们的工作原理和各自的优缺点。
2.2.2 常用方法
在网络服务中,一端是客户程序,另一端是服务程序,在中间可能有代理程序。由此看来,可以在不同的层次上实现多台服务器的负载均衡。用集群解决网络服务性能问题的现有方法主要分为以下四类。
2.2.2.1 基于RR-DNS
NCSA的可伸缩的WEB服务器系统就是最早基于RR-DNS(Round-Robin Domain Name System)的原型系统。它的结构和工作流程如下图所示:
技术分享
有一组WEB服务器,他们通过分布式文件系统 AFS(Andrew File System)来共享所有的HTML文档。这组服务器拥有相同的域名(如www.ncsa.uiuc.edu),当用户按照这个域名访问时,RR-DNS服务器会把域名轮流解析到这组服务器的不同IP地址,从而将访问负载分到各台服务器上。
这种方法带来几个问题:
第一,域名服务器是一个分布式系统,是按照一定的层次结构组织的。当用户就域名解析请求提交给本地的域名服务器,它会因不能直接解析而向上一级域名服务器提交,上一级域名服务器再依次向上提交,直到RR-DNS域名服器把这个域名解析到其中一台服务器的IP地址。可见,从用户到RR-DNS间存在多台域名服器,而它们都会缓冲已解析的名字到IP地址的映射,这会导致该域名服器组下所有用户都会访问同一WEB服务器,出现不同WEB服务器间严重的负载不平衡。为了保证在域名服务器中域名到IP地址的映射不被长久缓冲,RR-DNS在域名到IP地址的映射上设置一个TTL(Time To Live)值,过了这一段时间,域名服务器将这个映射从缓冲中淘汰。当用户请求,它会再向上一级域名服器提交请求并进行重新影射。这就涉及到如何设置这个TTL值,若这个值太大,在这个TTL期间,很多请求会被映射到同一台WEB服务器上,同样会导致严重的负载不平衡。若这个值太小,例如是0,会导致本地域名服务器频繁地向RR-DNS提交请求,增加了域名解析的网络流量,同样会使RR-DNS服务器成为系统中一个新的瓶颈。
第二,用户机器会缓冲从名字到IP地址的映射,而不受TTL值的影响,用户的访问请求会被送到同一台WEB服务器上。由于用户访问请求的突发性和访问方式不同,例如有的人访问一下就离开了,而有的人访问可长达几个小时,所以各台服务器间的负载仍存在倾斜(Skew)而不能控制。假设用户在每个会话中平均请求数为20,负载最大的服务器获得的请求数额高于各服务器平均请求数的平均比率超过百分之三十。也就是说,当TTL值为0时,因为用户访问的突发性也会存在着较严重的负载不平衡。
第三,系统的可靠性和可维护性差。若一台服务器失效,会导致将域名解析到该服务器的用户看到服务中断,即使用户按“Reload”按钮,也无济于事。系统管理员也不能随时地将一台服务器切出服务进行系统维护,如进行操作系统和应用软件升级,这需要修改RR-DNS服务器中的IP地址列表,把该服务器的IP地址从中划掉,然后等上几天或者更长的时间,等所有域名服器将该域名到这台服务器的映射淘汰,和所有映射到这台服务器的客户机不再使用该站点为止。
2.2.2.2 DNS delegation
Another more effective technique for load-balancing using DNS is to delegate www.example.org as a sub-domain whose zone is served by each of the same servers that are serving the web site. This technique works particularly well where individual servers are spread geographically on the Internet. For example:
one.example.org A 192.0.2.1
two.example.org A 203.0.113.2
www.example.org NS one.example.org
www.example.org NS two.example.org
However, the zone file for www.example.org on each server is different such that each server resolves its own IP Address as the A-record. On server one the zone file for www.example.org reports:
@ in a 192.0.2.1
On server two the same zone file contains:
@ in a 203.0.113.2
This way, when a server is down, its DNS will not respond and the web service does not receive any traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches that server. Furthermore, the quickest DNS response to the resolver is nearly always the one from the network‘s closest server, ensuring geo-sensitive load-balancing. A short TTL on the A-record helps to ensure traffic is quickly diverted when a server goes down. Consideration must be given the possibility that this technique may cause individual clients to switch between individual servers in mid-session.
2.2.2.3 基于客户端
基于客户端的解决方法需要每个客户程序都有一定的服务器集群的知识,进而把以负载均衡的方式将请求发到不同的服务器。例如,Netscape Navigator浏览器访问Netscape的主页时,它会随机地从一百多台服务器中挑选第N台,最后将请求送往www.netscape.com。然而,这不是很好的解决方法,Netscape只是利用它的Navigator避免了RR-DNS解析的麻烦,当使用IE等其他浏览器不可避免的要进行RR-DNS解析。
Smart ClientBerkeley做的另一种基于客户端的解决方法。服务提供一个Java Applet在客户方浏览器中运行,Applet向各个服务器发请求来收集服务器的负载等信息,再根据这些信息将客户的请求发到相应的服务器。高可用性也在Applet中实现,当服务器没有响应时,Applet向另一个服务器转发请求。这种方法的透明性不好,Applet向各服务器查询来收集信息会增加额外的网络流量,不具有普遍的适用性。
2.2.2.4 基于应用层
多台服务器通过高速的互联网络连接成一个集群系统,在前端有一个基于应用层的负载调度器。当用户访问请求到达调度器时,请求会提交给作负载均衡调度的应用程序,分析请求,根据各个服务器的负载情况,选出一台服务器,重写请求并向选出的服务器访问,取得结果后,再返回给用户。
应用层负载均衡调度的典型代表有Zeus负载调度器、pWeb、Reverse-Proxy和SWEB等。Zeus负载调度器是Zeus公司的商业产品,它是在Zeus Web服务器程序改写而成的,采用单进程事件驱动的服务器结构。pWeb就是一个基于Apache 1.1服务器程序改写而成的并行WEB调度程序,当一个HTTP请求到达时,pWeb会选出一个服务器,重写请求并向这个服务器发出改写后的请求,等结果返回后,再将结果转发给客户。Reverse-Proxy利用Apache 1.3.1中的Proxy模块和Rewrite模块实现一个可伸缩WEB服务器,它与pWeb的不同之处在于它要先从Proxy的cache中查找后,若没有这个副本,再选一台服务器,向服务器发送请求,再将服务器返回的结果转发给客户。SWEB是利用HTTP中的redirect错误代码,将客户请求到达一台WEB服务器后,这个WEB服务器根据自己的负载情况,自己处理请求,或者通过redirect错误代码将客户引到另一台WEB服务器,以实现一个可伸缩的WEB服务器。
基于应用层负载均衡调度的多服务器解决方法也存在一些问题。第一,系统处理开销特别大,致使系统的伸缩性有限。当请求到达负载均衡调度器至处理结束时,调度器需要进行四次从核心到用户空间或从用户空间到核心空间的上下文切换和内存复制;需要进行二次TCP连接,一次是从用户到调度器,另一次是从调度器到真实服务器;需要对请求进行分析和重写。这些处理都需要不小的CPU、内存和网络等资源开销,且处理时间长。所构成系统的性能不能接近线性增加的,一般服务器组增至3或4台时,调度器本身可能会成为新的瓶颈。所以,这种基于应用层负载均衡调度的方法的伸缩性极其有限。第二,基于应用层的负载均衡调度器对于不同的应用,需要写不同的调度器。以上几个系统都是基于HTTP协议,若对于FTP、Mail、POP3等应用,都需要重写调度器。
2.2.2.5 基于IP层
用户通过虚拟IP地址(Virtual IP Address)访问服务时,访问请求的报文会到达负载调度器,由它进行负载均衡调度,从一组真实服务器选出一个,将报文的目标地址Virtual IP Address改写成选定服务器的地址,报文的目标端口改写成选定服务器的相应端口,最后将报文发送给选定的服务器。真实服务器的回应报文经过负载调度器时,将报文的源地址和源端口改为Virtual IP Address和相应的端口,再把报文发给用户。
Berkeley的Magic RouterCisco的Local Director、Alteon的ACE DirectorF5的Big/IP等都是使用网络地址转换方法。Magic Router是在Linux 1.3版本上应用快速报文插入技术,使得进行负载均衡调度的用户进程访问网络设备接近核心空间的速度,降低了上下文切换的处理开销,但并不彻底,它只是研究的原型系统,没有成为有用的系统存活下来。Cisco的Local Director、Alteon的ACE Director和F5的Big/IP是非常昂贵的商品化系统,它们支持部分TCP/UDP协议,有些在ICMP处理上存在问题。
IBM的TCP Router使用修改过的网络地址转换方法在SP/2系统实现可伸缩的WEB服务器。TCP Router修改请求报文的目标地址并把它转发给选出的服务器,服务器能把响应报文的源地址置为TCP Router地址而非自己的地址。这种方法的好处是响应报文可以直接返回给客户,坏处是每台服务器的操作系统内核都需要修改。IBM的 NetDispatcher是TCP Router的后继者,它将报文转发给服务器,而服务器在non-ARP的设备配置路由器的地址。这种方法与LVS集群中的VS/DR类似,它具有很高的可伸缩性。
贝尔实验室ONE-IP中,每台服务器都独立的IP地址,但都用IP Alias配置上同一VIP地址,采用路由和广播两种方法分发请求,服务器收到请求后按VIP地址处理请求,并以VIP为源地址返回结果。这种方法也是为了避免回应报文的重写,但是每台服务器用IP Alias配置上同一VIP地址,会导致地址冲突,有些操作系统会出现网络失效。通过广播分发请求,同样需要修改服务器操作系统的源码来过滤报文,使得只有一台服务器处理广播来的请求。
微软的Windows NT负载均衡服务(Windows NT Load Balancing Service,WLBS)是1998年底收购Valence Research公司获得的,它与ONE-IP中的基于本地过滤方法一样。WLBS作为过滤器运行在网卡驱动程序和TCP/IP协议栈之间,获得目标地址为VIP的报文,它的过滤算法检查报文的源IP地址和端口号,保证只有一台服务器将报文交给上一层处理。但是,当有新结点加入和有结点失效时,所有服务器需要协商一个新的过滤算法,这会导致所有有Session的连接中断。同时,WLBS需要所有的服务器有相同的配置,如网卡速度和处理能力。
2.2.3 VS/NAT
由于IPv4中IP地址空间的日益紧张和安全方面的原因,很多网络使用保留IP地址(10.0.0.0/255.0.0.0、172.16.0.0/255.240.0.0和192.168.0.0/255.255.0.0)。这些地址不在Internet上使用,而是专门为内部网络预留的。当内部网络中的主机要访问Internet或被Internet访问时,就需要采用网络地址转换(Network Address Translation, 以下简称NAT),将内部地址转化为Internets上可用的外部地址。NAT的工作原理是报文头(目标地址、源地址和端口等)被正确改写后,客户相信它们连接一个IP地址,而不同IP地址的服务器组也认为它们是与客户直接相连的。由此,可以用NAT方法将不同IP地址的并行网络服务变成在一个IP地址上的一个虚拟服务。
VS/NAT的体系结构如下图所示。在一组服务器前有一个调度器,它们是通过Switch/HUB相连接的。这些服务器提供相同的网络服务、相同的内容,即不管请求被发送到哪一台服务器,执行结果是一样的。服务的内容可以复制到每台服务器的本地硬盘上,可以通过网络文件系统(如NFS)共享,也可以通过一个分布式文件系统来提供。
 
技术分享 
客户通过Virtual IP Address(虚拟服务的IP地址)访问网络服务时,请求报文到达调度器,调度器根据连接调度算法从一组真实服务器中选出一台服务器,将报文的目标地址Virtual IP Address改写成选定服务器的地址,报文的目标端口改写成选定服务器的相应端口,最后将修改后的报文发送给选出的服务器。同时,调度器在连接Hash表中记录这个连接,当这个连接的下一个报文到达时,从连接Hash表中可以得到原选定服务器的地址和端口,进行同样的改写操作,并将报文传给原选定的服务器。当来自真实服务器的响应报文经过调度器时,调度器将报文的源地址和源端口改为Virtual IP Address和相应的端口,再把报文发给用户。在连接上引入一个状态机,不同的报文会使得连接处于不同的状态,不同的状态有不同的超时值。在TCP连接中,根据标准的TCP有限状态机进行状态迁移。在UDP中,只设置一个UDP状态。不同状态的超时值是可以设置的,在缺省情况下,SYN状态的超时为1分钟,ESTABLISHED状态的超时为15分钟,FIN状态的超时为1分钟;UDP状态的超时为5分钟。当连接终止或超时,调度器将这个连接从连接Hash表中删除。
这样,客户所看到的只是在Virtual IP Address上提供的服务,而服务器集群的结构对用户是透明的。对改写后的报文,应用增量调整Checksum的算法调整TCP Checksum的值,避免了扫描整个报文来计算Checksum的开销。
在一些网络服务中,它们将IP地址或者端口号在报文的数据中传送,若只对报文头的IP地址和端口号作转换,这样就会出现不一致性,服务会中断。所以,针对这些服务,需要编写相应的应用模块来转换报文数据中的IP地址或者端口号。
下面,举个例子来进一步说明VS/NAT,如图所示:
技术分享
VS/NAT的配置如下所示,所有到IP地址为202.103.106.5和端口为80的流量都被负载均衡地调度的真实服务器172.16.0.2:80和 172.16.0.3:8000上。目标地址为202.103.106.5:21的报文被转移到172.16.0.3:21上。而到其他端口的报文将被拒绝。
Protocol Virtual IP address Port Real IP address Port Weight
TCP 202.103.106.5 80 172.16.0.2 80 1
172.16.0.3 8000 2
TCP 202.103.106.5 21 172.16.0.3 21 1
     
从以下的例子中,可以更详细地了解报文改写的流程。
访问Web服务的报文可能有以下的源地址和目标地址:
SOURCE  202.100.1.2:3456   DEST   202.103.106.5:80
调度器从调度列表中选出一台服务器,例如是172.16.0.3:8000。该报文会被改写为如下地址,并将它发送给选出的服务器。
SOURCE  202.100.1.2:3456   DEST    172.16.0.3:8000
从服务器返回到调度器的响应报文如下:
SOURCE 172.16.0.3:8000    DEST  202.100.1.2:3456
响应报文的源地址会被改写为虚拟服务的地址,再将报文发送给客户:
SOURCE 202.103.106.5:80    DEST   202.100.1.2:3456
这样,客户认为是从202.103.106.5:80服务得到正确的响应,而不会知道该请求是服务器172.16.0.2还是服务器172.16.0.3处理的。
2.2.4VS/TUN
在VS/NAT的集群系统中,请求和响应的数据报文都需要通过负载调度器,当真实服务器的数目在10台和20台之间时,负载调度器将成为整个集群系统的新瓶颈。大多数Internet服务都有这样的特点:请求报文较短而响应报文往往包含大量的数据。如果能将请求和响应分开处理,即在负载调度器中只负责调度请求而响应直接返回给客户,将极大地提高整个集群系统的吞吐量。
IP隧道(IP tunneling)是将一个IP报文封装在另一个IP报文的技术,这可以使得目标为一个IP地址的数据报文能被封装和转发到另一个IP地址。IP隧道技术亦称为IP封装技术(IP encapsulation)。IP隧道主要用于移动主机和虚拟私有网络(Virtua lP private Network),在其中隧道都是静态建立的,隧道一端有一个IP地址,另一端也有唯一的IP地址。
利用IP隧道技术将请求报文封装转发给后端服务器,响应报文能从后端服务器直接返回给客户。但在这里,后端服务器有一组而非一个,所以不可能静态地建立一一对应的隧道,而是动态地选择一台服务器,将请求报文封装和转发给选出的服务器。这样,可以利用IP隧道的原理将一组服务器上的网络服务组成在一个IP地址上的虚拟网络服务。VS/TUN的体系结构如图所示,各个服务器将VIP地址配置在自己的IP隧道设备上。
技术分享
VS/TUN 的工作流程如上图所示:它的连接调度和管理与VS/NAT中的一样,只是它的报文转发方法不同。调度器根据各个服务器的负载情况,动态地选择一台服务器,将请求报文封装在另一个IP报文中,再将封装后的IP报文转发给选出的服务器;服务器收到报文后,先将报文解封获得原来目标地址为VIP的报文,服务器发现VIP地址被配置在本地的IP隧道设备上,所以就处理这个请求,然后根据路由表将响应报文直接返回给客户。

技术分享
需要指出,根据缺省的TCP/IP协议栈处理,请求报文的目标地址为VIP,响应报文的源地址肯定也为VIP,所以响应报文不需要作任何修改,可以直接返回给客户,客户认为得到正常的服务,而不会知道究竟是哪一台服务器处理的。
2.2.5VS/DR
跟VS/TUN方法相同,VS/DR利用大多数Internet服务的非对称特点,负载调度器中只负责调度请求,而服务器直接将响应返回给客户,可以极大地提高整个集群系统的吞吐量。该方法与IBM的Net Dispatcher产品中使用的方法类似(其中服务器上的IP地址配置方法是相似的)。
VS/DR的体系结构如图所示:调度器和服务器组都必须在物理上有一个网卡通过不分断的局域网相连,如通过高速的交换机或者HUB相连。VIP地址为调度器和服务器组共享,调度器配置的VIP地址是对外可见的,用于接收虚拟服务的请求报文。所有的服务器把VIP地址配置在各自的Non-ARP网络设备上,它对外面是不可见的,只是用于处理目标地址为VIP的网络请求。
技术分享
VS/DR的工作流程如上图所示:它的连接调度和管理与VS/NAT和VS/TUN中的一样,它的报文转发方法又有不同,将报文直接路由给目标服务器。在VS/DR中,调度器根据各个服务器的负载情况,动态地选择一台服务器,不修改也不封装IP报文,而是将数据帧的MAC地址改为选出服务器的MAC地址,再将修改后的数据帧在与服务器组的局域网上发送。因为数据帧的MAC地址是选出的服务器,所以服务器肯定可以收到这个数据帧,从中可以获得该IP报文。当服务器发现报文的目标地址VIP是在本地的网络设备上,服务器处理这个报文,然后根据路由表将响应报文直接返回给客户。
技术分享
2.2.6 比较
2.2.6.1 总体比较
以上主要讲述了LVS集群中的三种IP负载均衡技术。在分析网络地址转换方法(VS/NAT)的缺点和网络服务的非对称性的基础上,我们给出了通过IP隧道实现虚拟服务器的方法VS/TUN,和通过直接路由实现虚拟服务器的方法VS/DR,极大地提高了系统的伸缩性。
在VS/DR中,根据缺省的TCP/IP协议栈处理,请求报文的目标地址为VIP,响应报文的源地址肯定也为VIP,所以响应报文不需要作任何修改,可以直接返回给客户,客户认为得到正常的服务,而不会知道是哪一台服务器处理的。
VS/DR负载调度器跟VS/TUN一样只处于从客户到服务器的半连接中,按照半连接的TCP有限状态机进行状态迁移。
三种方法的优缺点比较/LVS负载均衡 编辑
三种IP负载均衡技术的优缺点归纳在下表中:
方法
Server
VS/NAT VS/TUN VS/DR
Server any Tunneling Non-arp device
Server network private LAN/WAN LAN
Server number low(10~20) High(100) High(100)
Server gateway Load balancer Own router Own router
注:以上3种方法所能支持最大服务器数目的估计是假设调度器使用100M网卡,调度器的硬件配置与后端服务器的硬件配置相同,而且是对一般Web服务。使用更高的硬件配置(如千兆网卡和更快的处理器)作为调度器,调度器所能调度的服务器数量会相应增加。当应用不同时,服务器的数目也会相应地改变。所以,以上数据估计主要是为三种方法的伸缩性进行量化比较。
2.2.6.2 Virtual Server via NAT
VS/NAT的优点是服务器可以运行任何支持TCP/IP的操作系统,它只需要一个IP地址配置在调度器上,服务器组可以用私有的IP地址。缺点是它的伸缩能力有限,当服务器结点数目升到20时,调度器本身有可能成为系统的新瓶颈,因为在VS/NAT中请求和响应报文都需要通过负载调度器。
基于VS/NAT的集群系统可以适合许多服务器的性能要求。如果负载调度器成为系统新的瓶颈,可以有三种方法解决这个问题:混合方法、VS/TUN和 VS/DR。在DNS混合集群系统中,有若干个VS/NAT负载调度器,每个负载调度器带自己的服务器集群,同时这些负载调度器又通过RR-DNS组成简单的域名。但VS/TUN和VS/DR是提高系统吞吐量的更好方法。
对于那些将IP地址或者端口号在报文数据中传送的网络服务,需要编写相应的应用模块来转换报文数据中的IP地址或者端口号。这会带来实现的工作量,同时应用模块检查报文的开销会降低系统的吞吐率。
2.2.6.3 Virtual Server via IP Tunneling
在VS/TUN的集群系统中,负载调度器只将请求调度到不同的后端服务器,后端服务器将应答的数据直接返回给用户。这样负载调度器就可以处理大量的请求,它甚至可以调度百台以上的服务器(同等规模的服务器),而它不会成为系统的瓶颈。即使负载调度器只有100Mbps的全双工网卡,整个系统的最大吞吐量可超过 1Gbps。所以,VS/TUN可以极大地增加负载调度器调度的服务器数量,而它本身不会成为系统的瓶颈,可以用来构建高性能的超级服务器。
VS/TUN技术对服务器有要求,即所有的服务器必须支持“IP Tunneling”或者“IP Encapsulation”协议。目前,VS/TUN的后端服务器主要运行Linux操作系统。因为“IP Tunneling”正成为各个操作系统的标准协议,所以VS/TUN应该会适用运行其他操作系统的后端服务器。
2.2.6.4 Virtual Server via Direct Routing
跟VS/TUN方法一样,VS/DR调度器只处理客户到服务器端的连接,响应数据可以直接从独立的网络路由返回给客户。这可以极大地提高LVS集群系统的伸缩性。
跟VS/TUN相比,这种方法没有IP隧道的开销,但是要求负载调度器与实际服务器都有一块网卡连在同一物理网段上,服务器网络设备(或者设备别名)不作ARP响应,或者能将报文重定向(Redirect)到本地的Socket端口上。
2.2.7 文件系统
网络文件系统的伸缩能力有限,一般来说,NFS/CIFS服务器只能支持3~6个繁忙的服务器结点。对于规模较大的集群系统,可以考虑用分布式文件系统,如AFS、GFS、Coda和Intermezzo等。分布式文件系统可为各服务器提供共享的存储区,它们访问分布式文件系统就像访问本地文件系统一样,同时分布式文件系统可提供良好的伸缩性和可用性。
 
三、实例
3.1 总体比较
Nginx/LVS/HAProxy是目前使用最广泛的三种负载均衡软件。
一般对负载均衡的使用是随着网站规模的提升根据不同的阶段来使用不同的技术。具体的应用需求还得具体分析,如果是中小型的Web应用,比如日PV小于1000万,用Nginx就完全可以了;如果机器不少,可以用DNS轮询,LVS所耗费的机器还是比较多的;大型网站或重要的服务,且服务器比较多时,可以考虑用LVS。
一种是通过硬件来进行,常见的硬件有比较昂贵的F5和Array等商用的负载均衡器,它的优点就是有专业的维护团队来对这些服务进行维护、缺点就是花销太大,所以对于规模较小的网络服务来说暂时还没有需要使用;另外一种就是类似于Nginx/LVS/HAProxy的基于 Linux的开源免费的负载均衡软件,这些都是通过软件级别来实现,所以费用非常低廉。
3.2 Nginx
3.2.1优点
1.  工作在网络的7层之上,可以针对http应用做一些分流的策略,比如针对域名、目录结构,它的正则规则比HAProxy更为强大和灵活,这也是它目前广泛流行的主要原因之一,Nginx单凭这点可利用的场合就远多于LVS了。
2.  Nginx对网络稳定性的依赖非常小,理论上能ping通就能进行负载功能,这个也是它的优势之一;相反LVS对网络稳定性依赖比较大。
3.  Nginx安装和配置比较简单,测试起来比较方便,它基本能把错误用日志打印出来。LVS的配置、测试就要花比较长的时间了,LVS对网络依赖比较大。
4.  可以承担高负载压力且稳定,在硬件不差的情况下一般能支撑几万次的并发量,负载度比LVS相对小些。
5.  Nginx可以通过端口检测到服务器内部的故障,比如根据服务器处理网页返回的状态码、超时等等,并且会把返回错误的请求重新提交到另一个节点,不过其中缺点就是不支持url来检测。比如用户正在上传一个文件,而处理该上传的节点刚好在上传过程中出现故障,Nginx会把上传切到另一台服务器重新处理,而LVS就直接断掉了,如果是上传一个很大的文件或者很重要的文件的话,用户可能会因此而不满。
6.  Nginx不仅仅是一款优秀的负载均衡器/反向代理软件,它同时也是功能强大的Web应用服务器。LNMP也是近几年非常流行的web架构,在高流量的环境中稳定性也很好。
7.  Nginx现在作为Web反向加速缓存越来越成熟了,速度比传统的Squid服务器更快,可以考虑用其作为反向代理加速器。
8.  Nginx可作为中层反向代理使用,这一层面Nginx基本上无对手,唯一可以对比Nginx的就只有 lighttpd了,不过 lighttpd目前还没有做到Nginx完全的功能,配置也不那么清晰易读,社区资料也远远没Nginx活跃。
9.  Nginx也可作为静态网页和图片服务器,这方面的性能也无对手。还有Nginx社区非常活跃,第三方模块也很多。
3.2.2 缺点
1.  Nginx仅能支持http、https和Email协议,这样就在适用范围上面小些,这个是它的缺点。
2.  对后端服务器的健康检查,只支持通过端口来检测,不支持通过url来检测。不支持Session的直接保持,但能通过ip_hash来解决。
3.  LVS:使用Linux内核集群实现一个高性能、高可用的负载均衡服务器,它具有很好的可伸缩性(Scalability)、可靠性(Reliability)和可管理性(Manageability)。
3.3 LVS
3.3.1 优点
1.  抗负载能力强、工作在网络四层之上仅作分发之用,没有流量的产生,这个特点也决定了它在负载均衡软件里的性能最强的,对内存和CPU资源消耗比较低。
2.  配置性比较低,这是一个缺点也是一个优点,因为没有可太多配置的东西,所以并不需要太多接触,大大减少了人为出错的几率。
3.  工作稳定,因为其本身抗负载能力很强,自身有完整的双机热备方案,如LVS+Keepalived。
4.  无流量,LVS只分发请求,而流量并不从它本身出去,这点保证了均衡器IO的性能不会受到大流量的影响。
5.  应用范围比较广,因为LVS工作在四层,所以它几乎可以对所有应用做负载均衡,包括http、数据库、在线聊天室等等。
3.3.2 缺点
软件本身不支持正则表达式处理,不能做动静分离;而现在许多网站在这方面都有较强的需求,这个是Nginx/HAProxy+Keepalived的优势所在。
如果是网站应用比较庞大的话,LVS/DR+Keepalived实施起来就比较复杂了,特别后面有 Windows Server的机器的话,如果实施及配置还有维护过程就比较复杂了,相对而言,Nginx/HAProxy+Keepalived就简单多了。
3.4 HAProxy
HAProxy的特点是:
1.  HAProxy支持虚拟主机。
2.  HAProxy的优点能够补充Nginx的一些缺点,比如支持Session的保持,Cookie的引导;同时支持通过获取指定的url来检测后端服务器的状态。
3.  HAProxy跟LVS类似,本身就只是一款负载均衡软件;单纯从效率上来讲HAProxy会比Nginx有更出色的负载均衡速度,在并发处理上也是优于Nginx的。
4.  HAProxy支持TCP协议的负载均衡转发,可以对MySQL读进行负载均衡,对后端的MySQL节点进行检测和负载均衡。
HAProxy负载均衡策略非常多,HAProxy的负载均衡算法现在具体有如下8种:
a)  roundrobin,表示简单的轮询;
b)  static-rr,表示根据权重;
c)  leastconn,表示最少连接者先处理;
d)  source,表示根据请求源IP,这个跟Nginx的IP_hash机制类似,我们用其作为解决session问题的一种方法;
e)  ri,表示根据请求的URI;
f)  rl_param,表示根据请求的URl参数’balance url_param’ requires an URL parameter name;
g)  hdr(name),表示根据HTTP请求头来锁定每一次HTTP请求;
h)  rdp-cookie(name),表示根据据cookie(name)来锁定并哈希每一次TCP请求。
3.5 Nginx VS LVS
1.  Nginx工作在网络的七层,可以针对http应用本身来做分流策略,比如针对域名、目录结构等,相比之下LVS并不具备这样的功能,所以Nginx可用场合就远多于LVS了;但Nginx有用的这些功能使其可调整度要高于LVS,配置多人为出问题的几率会大。
2.  Nginx对网络稳定性的依赖较小,理论上只要ping得通,网页访问正常,Nginx就能连得通,这是Nginx的一大优势。Nginx同时还能区分内外网,如果是同时拥有内外网的节点,就相当于单机拥有了备份线路;LVS就比较依赖于网络环境,目前来看服务器在同一网段内并且LVS使用direct方式分流,效果较能得到保证。另外注意,LVS需要至少申请多一个IP来做Visual IP。
3.  Nginx安装和配置比较简单,测试起来也很方便,因为它基本能把错误用日志打印出来。LVS的安装和配置、测试就要花比较长的时间了;LVS对网络依赖比较大,很多时候不能配置成功都是因为网络问题而不是配置问题,出了问题要解决也相应的会麻烦得多。
4.  Nginx能承受很高负载且稳定,但负载度和稳定度差LVS还有几个等级:Nginx处理所有流量所以受限于机器IO和配置。
5.  Nginx可以检测到服务器内部的故障,比如根据服务器处理网页返回的状态码、超时等等,并且会把返回错误的请求重新提交到另一个节点。目前LVS中VS/DR也能支持针对服务器内部的情况来监控,但LVS的原理使其不能重发请求。比如用户正在上传一个文件,而处理该上传的节点刚好在上传过程中出现故障,Nginx会把上传切到另一台服务器重新处理,而LVS就直接断掉了。
6.  Nginx对请求的异步处理可以帮助节点服务器减轻负载,假如使用 apache直接对外服务,那么出现很多的窄带链接时apache服务器将会占用大量内存而不能释放,使用多一个Nginx做apache代理的话,这些窄带链接会被Nginx挡住,apache上就不会堆积过多的请求,这样就减少了相当多的资源占用。这点使用squid也有相同的作用。
7.  Nginx能支持http、https,LVS所支持的应用在这点上会比Nginx更多。在使用上,一般最前端所采取的策略应是LVS,也就是DNS的指向应为LVS均衡器,LVS的优点令它非常适合做这个任务。重要的IP地址。Nginx可作为LVS节点机器使用,一是可以利用Nginx的功能,二是可以利用Nginx的性能。Nginx也可作为中层代理使用。
3.6 技术选择
现在对网络负载均衡的使用是随着网站规模的提升根据不同的阶段来使用不同的技术:
第一阶段:利用Nginx或HAProxy进行单点的负载均衡,这一阶段服务器规模刚脱离开单服务器、单数据库的模式,需要一定的负载均衡,但是规模较小没有专业的维护团队来进行维护,也不需要进行大规模的网站部署。这样利用Nginx或HAproxy就是第一选择,配置容易,在七层之上利用HTTP协议就可以。
第二阶段:随着网络服务进一步扩大,这时单点的Nginx已经不能满足,这时使用LVS或者商用Array就是首要选择,Nginx此时就作为LVS或者Array的节点来使用。
第三阶段:这时网络服务已经成为主流产品,此时随着公司知名度也进一步扩展,相关人才的能力以及数量也随之提升,这时无论从开发适合自身产品的定制,以及降低成本来讲开源的LVS成为首选。
最终形成比较理想的基本架构为:Array/LVS — Nginx/Haproxy — Squid/Varnish — AppServer。
四、SLB
负载均衡(Server Load Balancer,简称SLB)是对多台云服务器进行流量分发的负载均衡服务。SLB可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。
The process of evenly distributing multiple user requests across a number of servers supporting a company‘s network. Utilized effectively, this traffic optimization method can increase productivity and performance of a network by allowing users in a variety of locations access to business-critical information and applications without slow response times or failed connections.
When servers are overwhelmed with high-volume traffic, processing capabilities decelerate and data retrieval becomes slow or, in some cases, impossible. Traffic congestions and server request failures are just some of the potential problems that server load balancing can solve. Since most businesses rely on the availability of network information and applications, retrieval complications can hinder productivity in very substantial ways. By evenly distributing server requests across multiple servers, load balancing provides maximum efficiency of data center resources. Along with the efficient direction of traffic, server load balancing solutions can also provide alternate routes to business-sensitive information when user requests increase to maximum levels or a particular server loses functionality. By providing these additional paths to data and applications, networks can maintain a high-level of IT infrastructure support, resulting in increased performance and guaranteed around the clock access.
技术分享
Server load balancing is a method for improving the availability and performance of software applications that are run across multiple servers. This method boosts application availability by routing client request traffic away from servers that are congested or malfunctioning, and elevates performance by balancing request traffic across healthy servers so that no one server is over-burdened.
Server load balancing is especially important for mission critical applications that handle a high volume of requests. In high traffic contexts such as popular websites and web-based applications, request traffic typically must be balanced across servers in multiple geographically dispersed datacenters.



以上是关于负载均衡汇总的主要内容,如果未能解决你的问题,请参考以下文章

DevOps之负载均衡

怎么实现服务器的负载均衡

负载均衡

Nginx负载均衡

LVS负载均衡群集

负载均衡