14 深度学习-卷积

Posted tao614

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了14 深度学习-卷积相关的知识,希望对你有一定的参考价值。

1.简述人工智能、机器学习和深度学习三者的联系与区别。

机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。

技术图片

 

 

2. 全连接神经网络与卷积神经网络的联系与区别。

卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节点就是一个神经元。在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连,为了展示每一层神经元的维度,一般会将每一层卷积层的节点组织成一个三维矩阵。
全连接神经网络和卷积神经网络的唯一区别就是神经网络相邻两层的连接方式。

 

3.理解卷积计算。

以digit0为例,进行手工演算。

from sklearn.datasets import load_digits #小数据集8*8

digits = load_digits()

0 0 5 13 9 1 0 0
0 0 13 15 10 15 5 0
0 3 15 2 0 11 8 0
0 4 12 0 0 8 8 0
0 5 8 0 0 9 8 0
0 4 11 0 1 12 7 0
0 2 14 5 10 12 0 0
0 0 6 13 10 0 0 0

卷积核

技术图片

 

 

结果:

技术图片

 

 

 

4.理解卷积如何提取图像特征。

读取一个图像;

以下矩阵为卷积核进行卷积操作;

显示卷积之后的图像,观察提取到什么特征。

 

1 0 -1
1 0 -1
1 0 -1

 

1 1 1
0 0 0
-1 -1 -1

 

-1 -1 -1
-1 8 -1
-1 -1 -1

 

卷积API

scipy.signal.convolve2d

tf.keras.layers.Conv2D

 

源代码:

from scipy.signal import convolve2d
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

I=Image.open(rD:PycharmProjects201706120186罗奕涛codeimg1.jpg)
I.show()
L=I.convert(L)
L.show()
c=np.array(I)
cg=np.array(L)

k1=np.array([[1,0,-1],[1,0,-1],[1,0,-1]])
k2=np.array([[1,1,1],[0,0,0],[-1,-1,-1]])
k3=np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])


cat1=convolve2d(cg,k1,boundary=symm,mode=same)
cat2=convolve2d(cg,k2,boundary=symm,mode=same)
cat3=convolve2d(cg,k3,boundary=symm,mode=same)


plt.matshow(cat1)
plt.show()
plt.matshow(cat2)
plt.show()
plt.matshow(cat3)
plt.show()

 

 

原图片

技术图片

 

 灰度图

技术图片

 

 卷积后

技术图片

 

 技术图片

 

 技术图片

 

 

5. 安装Tensorflow,keras

参考:https://blog.csdn.net/u011119817/article/details/88309256 

 技术图片

 

 

6. 设计手写数字识别模型结构,注意数据维度的变化。

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D

model = tf.keras.Sequential()

model.add(Conv2D(…))

model.add(MaxPool2D(…))

...

#可以上传手动演算的每层数据结构的变化过程。model.summary() 

 

参考:

https://www.jianshu.com/p/afe485aa08ce

https://blog.csdn.net/junjun150013652/article/details/82217571

源代码:

import os
os.environ[TF_CPP_MIN_LOG_LEVEL] = 2#忽略警告
# 导入相关包
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D

# 建立模型
model = Sequential()

# 一层卷积
model.add(Conv2D(filters=16,kernel_size=(5, 5),padding=same,input_shape=(28, 28, 1),activation=relu))
# 池化层1
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 二层卷积
model.add(Conv2D(filters=32,kernel_size=(5, 5),padding=same,activation=relu))
# 池化层2
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 三层卷积
model.add(Conv2D(filters=64,kernel_size=(5, 5),padding=same,activation=relu))


model.add(Flatten())  # 平坦层
model.add(Dense(128, activation=relu))  # 全连接层
model.add(Dropout(0.25))
model.add(Dense(10, activation=softmax)) # 激活函数

model.summary()

 

结果:

技术图片

 

以上是关于14 深度学习-卷积的主要内容,如果未能解决你的问题,请参考以下文章

14 深度学习-卷积

14深度学习-卷积

14深度学习-卷积

14深度学习-卷积

14深度学习-卷积

14 深度学习-卷积