[Codeforces 226E]Noble Knight's Path

Posted mrsrz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Codeforces 226E]Noble Knight's Path相关的知识,希望对你有一定的参考价值。

题目大意:
有一棵n个节点的树,m年。初始每个节点都有。每天有如下操作:
1. 给定c,让c没有(c只可能没有一次)。
2. 给定s,t,k,y,求从第y+1年到现在(即忽略y+1年之前的操作1),s到t的路径上第k个有的节点(不存在输出-1)。
解题思路:
首先树链剖分,然后对每天建主席树。我们把有设为1,没有设为0。
则操作1就是单点修改,直接改即可。
操作2,我们把整条路径拆成s到lca和lca到t,两边分开考虑。
对于s到lca的路径,让s沿着链往上跳,同时进行区间查询。若区间里的点已经大于等于k,则答案一定在这个区间内。
对于lca到t的路径,相当于要找的是t到lca上第(路径上有的点总数-k+1)个有的点,则和上面的方法一样。
那么我们假设已经知道了答案所在区间,如何求答案呢?其实相当于在一个01序列里查询某个区间倒数(从下往上dfs序递减)第k个1的位置,我们把[l,r]区间补成[l,n]区间,然后相当于整棵线段树上查询。
最后一个问题,如何处理在y+1之前没有的点。
我们发现,从第y棵主席树到当前的主席树,对应节点如果有变化,则一定是在y+1到现在才没有的。所以主席树上做差即可求出没有的点的个数,有的也能求了。
时间复杂度(O(nlog^2 n))。

C++ Code:

#include<bits/stdc++.h>
const int N=100005;
int n,fa[N],rt,cnt=0,sz[N],son[N]={0},top[N],dep[N],idx=0,Q,dfn[N],head[N],hq[N],nodes=0,year[N];
int ret,L,R;
inline int readint(){
    int c=getchar(),d=0;
    for(;!isdigit(c);c=getchar());
    for(;isdigit(c);c=getchar())
    d=(d<<3)+(d<<1)+(c^‘0‘);
    return d;
}
struct edge{
    int to,nxt;
}e[N<<1];
struct SegmentTreeNode{
    int v,ls,rs,l,r,sz;
}d[N<<5];
void BigMagician(int now){
    sz[now]=1;
    for(int i=head[now];i;i=e[i].nxt)
    if(fa[e[i].to]==now){
        dep[e[i].to]=dep[now]+1;
        BigMagician(e[i].to);
        sz[now]+=sz[e[i].to];
        if(!son[now]||sz[e[i].to]>sz[son[now]])son[now]=e[i].to;
    }
}
void dfs(int now){
    dfn[now]=++idx;hq[idx]=now;
    if(son[now])top[son[now]]=top[now],dfs(son[now]);
    for(int i=head[now];i;i=e[i].nxt)
    if(dep[now]<dep[e[i].to]&&e[i].to!=son[now])
    dfs(top[e[i].to]=e[i].to);
}
void build(int l,int r,int&o){
    o=++nodes;
    d[o].l=l,d[o].r=r,d[o].sz=r-l+1;
    if(l==r)d[o].v=1;else{
        int mid=l+r>>1;
        build(l,mid,d[o].ls);
        build(mid+1,r,d[o].rs);
        d[o].v=d[d[o].ls].v+d[d[o].rs].v;
    }
}
void modify(int o,int&nw,int&p){
    d[nw=++nodes]=d[o];
    --d[nw].v;
    if(d[o].l!=d[o].r){
        int mid=d[o].l+d[o].r>>1;
        if(p<=mid)modify(d[o].ls,d[nw].ls,p);else
        modify(d[o].rs,d[nw].rs,p);
    }
}
void query(int&o,int&nw){
    if(L<=d[o].l&&d[o].r<=R)ret+=d[o].v-d[nw].v;else{
        int mid=d[d[o].ls].r;
        if(L<=mid)query(d[o].ls,d[nw].ls);
        if(mid<R)query(d[o].rs,d[nw].rs);
    }
}
void query2(int&o,int&nw,int k){
    if(d[o].l==d[o].r)ret=hq[d[o].l];else{
        if(k<=d[d[o].rs].sz-d[d[o].rs].v+d[d[nw].rs].v)query2(d[o].rs,d[nw].rs,k);else
        query2(d[o].ls,d[nw].ls,k-(d[d[o].rs].sz-d[d[o].rs].v+d[d[nw].rs].v));
    }
}
inline int theLCA(int x,int y){
    for(;top[x]!=top[y];)
    if(dep[top[x]]>=dep[top[y]])x=fa[top[x]];else
    y=fa[top[y]];
    return(dep[x]<dep[y])?x:y;
}
inline int search_to_lca(int u,int v,int&k,int&y,int&nw){
    while(top[u]!=top[v]){
        ret=0;
        L=dfn[top[u]],R=dfn[u];
        query(y,nw);
        ret=R-L+1-ret;
        if(ret>=k){
            ret=0;
            L=dfn[u]+1,R=n;
            if(L<=n)
            query(y,nw);
            ret=R-L+1-ret;
            k+=ret;
            ret=0;
            query2(y,nw,k);
            return ret;
        }
        k-=ret;
        u=fa[top[u]];
    }
    ret=0;
    L=dfn[v],R=dfn[u];
    query(y,nw);
    ret=R-L+1-ret;
    if(ret>=k){
        ret=0;
        L=dfn[u]+1,R=n;
        if(L<=n)
        query(y,nw);
        ret=R-L+1-ret;
        k+=ret;
        ret=0;
        query2(y,nw,k);
        return ret;
    }
    k-=ret;
    return -1;
}
inline int search_on_a_list(int u,int v,int&y,int&nw){
    int ans=0;
    while(top[u]!=top[v]){
        ret=0;
        L=dfn[top[u]],R=dfn[u];
        query(y,nw);
        ret=R-L+1-ret;
        ans+=ret;
        u=fa[top[u]];
    }
    ret=0;
    L=dfn[v],R=dfn[u];
    query(y,nw);
    ret=R-L+1-ret;
    return ans+ret;
}
inline int search_from_lca(int u,int v,int&k,int&y,int&nw){
    int all=search_on_a_list(u,v,y,nw);
    if(all<k)return -1;
    k=all-k+1;
    while(top[u]!=top[v]){
        ret=0;
        L=dfn[top[u]],R=dfn[u];
        query(y,nw);
        ret=R-L+1-ret;
        if(ret>=k){
            ret=0;
            L=dfn[u]+1,R=n;
            if(L<=n)
            query(y,nw);
            ret=R-L+1-ret;
            k+=ret;
            ret=0;
            query2(y,nw,k);
            return ret;
        }
        k-=ret;
        u=fa[top[u]];
    }
    ret=0;
    L=dfn[v],R=dfn[u];
    query(y,nw);
    ret=R-L+1-ret;
    if(ret>=k){
        ret=0;
        L=dfn[u]+1,R=n;
        if(L<=n)
        query(y,nw);
        ret=R-L+1-ret;
        k+=ret;
        ret=0;
        query2(y,nw,k);
        return ret;
    }
    k-=ret;
    return -1;
}
int main(){
//    freopen("travel.in","r",stdin);
//    freopen("travel.out","w",stdout);
    memset(head,0,sizeof head);
    n=readint();
    for(int i=1;i<=n;++i){
        fa[i]=readint();
        if(!fa[i])rt=i;else{
            e[++cnt]=(edge){i,head[fa[i]]};
            head[fa[i]]=cnt;
            e[++cnt]=(edge){fa[i],head[i]};
            head[i]=cnt;
        }
    }
    dep[rt]=1;
    top[rt]=rt;
    BigMagician(rt);
    dfs(rt);
    build(1,n,year[0]);
    Q=readint();
    for(int i=1;i<=Q;++i){
        int opt=readint();
        if(opt==1){
            int p=readint();
            modify(year[i-1],year[i],dfn[p]);
        }else{
            year[i]=year[i-1];
            int u=readint(),v=readint(),k=readint(),y=readint();
            ret=0;
            L=R=dfn[u];
            query(year[y],year[i]);
            if(!ret)++k;
            int lca=theLCA(u,v);
            int ans=search_to_lca(u,lca,k,year[y],year[i]);
            if(!~ans){
                ret=0;
                L=R=dfn[lca];
                query(year[y],year[i]);
                if(!ret)++k;
                ans=search_from_lca(v,lca,k,year[y],year[i]);
            }
            if(ans==v||ans==u)ans=-1;
            printf("%d
",ans);
        }
    }
    return 0;
}

 

以上是关于[Codeforces 226E]Noble Knight's Path的主要内容,如果未能解决你的问题,请参考以下文章

Lesson 14 A noble gangster

每周刷题记录--by noble_

Aspect Software宣布与Noble Systems合并

Codeforces Round #599 (Div. 2)

Little Girl and Maximum Sum CodeForces - 276C

Codeforces 980D. Perfect Groups