初识Spark程序

Posted jifengblog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了初识Spark程序相关的知识,希望对你有一定的参考价值。

 执行第一个spark程序

普通模式提交任务

bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://hdp-node-01:7077 
--executor-memory 1G --total-executor-cores 2 examples/jars/spark-examples_2.11-2.0.2.jar 10

 

该算法是利用蒙特·卡罗算法求圆周率PI,通过计算机模拟大量的随机数,最终会计算出比较精确的π。 

 技术分享图片

 

 

高可用模式提交任务

在高可用模式下,因为涉及到多个Master,所以对于应用程序的提交就有了一点变化,因为应用程序需要知道当前的Master的IP地址和端口。这种HA方案处理这种情况很简单,只需要在SparkContext指向一个Master列表就可以了,

spark://host1:port1,host2:port2,host3:port3,应用程序会轮询列表,找到活着的Master。

bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://hdp-node-01:7077,hdp-node-02:7077,hdp-node-03:7077 
--executor-memory 1G --total-executor-cores 2 examples/jars/spark-examples_2.11-2.0.2.jar 10

 


启动Spark-Shell
 

spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下用scala编写spark程序。

运行spark-shell --master local[N] 读取本地文件

单机模式:通过本地N个线程跑任务,只运行一个SparkSubmit进程。

 

(1)需求

读取本地文件,实现文件内的单词计数。本地文件words.txt 内容如下:

hello me

hello you

hello her

 

 

(2)运行spark-shell --master local[2]

 技术分享图片

 

观察启动的进程:

 技术分享图片

 

(3)编写scala代码

sc.textFile("file:///root///words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect

 

代码说明

sc:Spark-Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可。

textFile:读取数据文件

flatMap:对文件中的每一行数据进行压平切分,这里按照空格分隔。

map:对出现的每一个单词记为1(word,1)

reduceByKey:对相同的单词出现的次数进行累加

collect:触发任务执行,收集结果数据。

 

(4)观察结果:

 技术分享图片

 

运行spark-shell --master local[N] 读取HDFS上数据

(1)、整合spark和HDFS,修改配置文件

在spark-env.sh ,添加HADOOP_CONF_DIR配置,指明了hadoop的配置文件后,默认它就是使用的hdfs上的文件

export HADOOP_CONF_DIR=/opt/bigdata/hadoop-2.6.4/etc/hadoop

 技术分享图片

 

(2)、再启动启动hdfs,然后重启spark集群

(3)、向hdfs上传一个文件到hdfs://hdp-node-01:9000/words.txt

 技术分享图片

 

(4)、在spark shell中用scala语言编写spark程序

sc.textFile("/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect


运行spark-shell 指定具体的master地址
 

(1)需求:

spark-shell运行时指定具体的master地址,读取HDFS上的数据,做单词计数,然后将结果保存在HDFS上。

 

(2)执行启动命令:

spark-shell --master spark://hdp-node-01:7077 
--executor-memory 1g --total-executor-cores 2

 技术分享图片

 

参数说明:

--master spark://hdp-node-01:7077 指定Master的地址

--executor-memory 1g 指定每个worker可用内存为1g

--total-executor-cores 2 指定整个集群使用的cup核数为2个

 

注意

如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。

 

(2)编写scala代码

sc.textFile("/words.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("/wc")

saveAsTextFile:保存结果数据到文件中 

 

(3)查看hdfs上结果

 技术分享图片

 

在IDEA中编写WordCount程序

spark-shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在IDEA中编写程序,然后打成jar包,最后提交到集群。最常用的是创建一个Maven项目,利用Maven来管理jar包的依赖。

 

(1).创建一个项目

 技术分享图片

  

(2).选择Maven项目,然后点击next 

 技术分享图片

 

(3).填写maven的GAV,然后点击next 

 技术分享图片

 

(4)填写项目名称,然后点击finish 

 技术分享图片

 

(5).创建好maven项目后,点击Enable Auto-Import 

 技术分享图片

 

(6)配置Maven的pom.xml

<properties>
        <scala.version>2.11.8</scala.version>
        <hadoop.version>2.7.4</hadoop.version>
        <spark.version>2.0.2</spark.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass></mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
</build>

 


(7)添加src/main/scala和src/test/scala,与pom.xml中的配置保持一致 

 技术分享图片

 

 技术分享图片 

 

(8)新建一个scala class,类型为Object 

 技术分享图片

 

(9).编写spark程序

 import org.apache.spark.{SparkConf, SparkContext}
 import org.apache.spark.rdd.RDD

  object WordCount {
  def main(args: Array[String]): Unit = {
    //设置spark的配置文件信息
    val sparkConf: SparkConf = new SparkConf().setAppName("WordCount")

    //构建sparkcontext上下文对象,它是程序的入口,所有计算的源头
    val sc: SparkContext = new SparkContext(sparkConf)

    //读取文件
    val file: RDD[String] = sc.textFile(args(0))
  
    //对文件中每一行单词进行压平切分
    val words: RDD[String] = file.flatMap(_.split(" "))

    //对每一个单词计数为1 转化为(单词,1)
    val wordAndOne: RDD[(String, Int)] = words.map(x=>(x,1))

    //相同的单词进行汇总 前一个下划线表示累加数据,后一个下划线表示新数据
    val result: RDD[(String, Int)] = wordAndOne.reduceByKey(_+_)

    //保存数据到HDFS
    result.saveAsTextFile(args(1))
    sc.stop()
  }
}

 


(10).使用Maven打包: 

点击idea右侧的Maven Project选项 

 技术分享图片

 

点击Lifecycle,选择package,然后点击Run Maven Build 

 技术分享图片

 

(11).选择编译成功的jar包,并将该jar上传到Spark集群中的某个节点上 

 技术分享图片

 

(12).首先启动hdfs和Spark集群

如果采用HA模式,先启动zookeeper集群

启动hdfs

/opt/bigdata/hadoop-2.6.4/sbin/start-dfs.sh

 

启动spark

/opt/bigdata/spark/sbin/start-all.sh

 

(13).使用spark-submit命令提交Spark应用(注意参数的顺序)

spark-submit --class cn.test.spark.WordCount --master spark://hdp-node-01:7077 
--executor-memory 1g --total-executor-cores 2 /root/spark-1.0-SNAPSHOT.jar /words.txt /spark_out

这里通过spark-submit提交任务到集群上。用的是spark的Standalone模式

Standalone模式是Spark内部默认实现的一种集群管理模式,这种模式是通过集群中的Master来统一管理资源。

1)       查看Spark的web管理界面

地址: 192.168.200.160:8080

 技术分享图片

 

2)       查看HDFS上的结果文件

技术分享图片

hdfs dfs -cat /spark_out/part*

 

(hello,3)

(me,1)

(you,1)

(her,1)

 

使用java语言编写spark wordcount程序

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
  
  /**
 * java代码实现spark的WordCount
 */
  public class WordCountJava {
    public static void main(String[] args) {
        //todo:1、构建sparkconf,设置配置信息
        SparkConf sparkConf = new SparkConf().setAppName("WordCount_Java").setMaster("local[2]");

        //todo:2、构建java版的sparkContext
        JavaSparkContext sc = new JavaSparkContext(sparkConf);

        //todo:3、读取数据文件
        JavaRDD<String> dataRDD = sc.textFile("d:/data/words1.txt");

        //todo:4、对每一行单词进行切分
        JavaRDD<String> wordsRDD = dataRDD.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) throws Exception {
               String[] words = s.split(" ");
                return Arrays.asList(words).iterator();
            }
        });

        //todo:5、给每个单词计为 1
       // Spark为包含键值对类型的RDD提供了一些专有的操作。这些RDD被称为PairRDD。
        // mapToPair函数会对一个RDD中的每个元素调用f函数,其中原来RDD中的每一个元素都是T类型的,
        // 调用f函数后会进行一定的操作把每个元素都转换成一个<K2,V2>类型的对象,其中Tuple2为多元组
        JavaPairRDD<String, Integer> wordAndOnePairRDD = wordsRDD.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String word) throws Exception {
                return new Tuple2<String,Integer>(word, 1);
            }
        });

        //todo:6、相同单词出现的次数累加
        JavaPairRDD<String, Integer> resultJavaPairRDD = wordAndOnePairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
 
        //todo:7、反转顺序
        JavaPairRDD<Integer, String> reverseJavaPairRDD = resultJavaPairRDD.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple) throws Exception {
                return new Tuple2<Integer, String>(tuple._2, tuple._1);
            }
        });
  
        //todo:8、把每个单词出现的次数作为key,进行排序,并且在通过mapToPair进行反转顺序后输出
        JavaPairRDD<String, Integer> sortJavaPairRDD = reverseJavaPairRDD.sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple) throws Exception {
                return  new Tuple2<String, Integer>(tuple._2,tuple._1);
                //或者使用tuple.swap() 实现位置互换,生成新的tuple;
            }
        });

        //todo:执行输出
        System.out.println(sortJavaPairRDD.collect());

        //todo:关闭sparkcontext
        sc.stop();
    }
}

 

以上是关于初识Spark程序的主要内容,如果未能解决你的问题,请参考以下文章

初识Spring源码 -- doResolveDependency | findAutowireCandidates | @Order@Priority调用排序 | @Autowired注入(代码片段

初识Spring源码 -- doResolveDependency | findAutowireCandidates | @Order@Priority调用排序 | @Autowired注入(代码片段

初识Spark

在这个 spark 代码片段中 ordering.by 是啥意思?

Spark学习 Spark初识

Spark学习之路 Spark初识 [转]