深度理解selectpoll和epoll
Posted linhaostudy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度理解selectpoll和epoll相关的知识,希望对你有一定的参考价值。
在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。
select()和poll() IO多路复用模型
select的缺点:
- 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:
#define __FD_SETSIZE 1024
) - 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
- select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
- select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。
相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。
拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。
因此,该epoll上场了。
epoll IO多路复用模型实现机制
由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。
设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?
epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:
- 调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)
- 调用epoll_ctl向epoll对象中添加这100万个连接的套接字
- 调用epoll_wait收集发生的事件的连接
如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。
下面来看看Linux内核具体的epoll机制实现思路。
当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:
struct eventpoll{
....
/*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
struct rb_root rbr;
/*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
struct list_head rdlist;
....
};
每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。
而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。
在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:
struct epitem{
struct rb_node rbn;//红黑树节点
struct list_head rdllink;//双向链表节点
struct epoll_filefd ffd; //事件句柄信息
struct eventpoll *ep; //指向其所属的eventpoll对象
struct epoll_event event; //期待发生的事件类型
}
当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。
从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。
OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。
- epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。
- epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。
- epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。
最后,附上一个epoll编程实例。(作者为sparkliang)
//
// a simple echo server using epoll in linux
//
// 2009-11-05
// 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;
// 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移
// by sparkling
//
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>
using namespace std;
#define MAX_EVENTS 500
struct myevent_s
{
int fd;
void (*call_back)(int fd, int events, void *arg);
int events;
void *arg;
int status; // 1: in epoll wait list, 0 not in
char buff[128]; // recv data buffer
int len, s_offset;
long last_active; // last active time
};
// set event
void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
bzero(ev->buff, sizeof(ev->buff));
ev->s_offset = 0;
ev->len = 0;
ev->last_active = time(NULL);
}
// add/mod an event to epoll
void EventAdd(int epollFd, int events, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
int op;
epv.data.ptr = ev;
epv.events = ev->events = events;
if(ev->status == 1){
op = EPOLL_CTL_MOD;
}
else{
op = EPOLL_CTL_ADD;
ev->status = 1;
}
if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)
printf("Event Add failed[fd=%d], evnets[%d]
", ev->fd, events);
else
printf("Event Add OK[fd=%d], op=%d, evnets[%0X]
", ev->fd, op, events);
}
// delete an event from epoll
void EventDel(int epollFd, myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if(ev->status != 1) return;
epv.data.ptr = ev;
ev->status = 0;
epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);
}
int g_epollFd;
myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd
void RecvData(int fd, int events, void *arg);
void SendData(int fd, int events, void *arg);
// accept new connections from clients
void AcceptConn(int fd, int events, void *arg)
{
struct sockaddr_in sin;
socklen_t len = sizeof(struct sockaddr_in);
int nfd, i;
// accept
if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)
{
if(errno != EAGAIN && errno != EINTR)
{
}
printf("%s: accept, %d", __func__, errno);
return;
}
do
{
for(i = 0; i < MAX_EVENTS; i++)
{
if(g_Events[i].status == 0)
{
break;
}
}
if(i == MAX_EVENTS)
{
printf("%s:max connection limit[%d].", __func__, MAX_EVENTS);
break;
}
// set nonblocking
int iret = 0;
if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)
{
printf("%s: fcntl nonblocking failed:%d", __func__, iret);
break;
}
// add a read event for receive data
EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);
EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);
}while(0);
printf("new conn[%s:%d][time:%d], pos[%d]
", inet_ntoa(sin.sin_addr),
ntohs(sin.sin_port), g_Events[i].last_active, i);
}
// receive data
void RecvData(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s*)arg;
int len;
// receive data
len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);
EventDel(g_epollFd, ev);
if(len > 0)
{
ev->len += len;
ev->buff[len] = '