spark streaming 消费 kafka入门采坑解决过程

Posted nulijiushimeili

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark streaming 消费 kafka入门采坑解决过程相关的知识,希望对你有一定的参考价值。

kafka 服务相关的命令

# 开启kafka的服务器
bin/kafka-server-start.sh -daemon config/server.properties &
# 创建topic
bin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic
# 开启kafka的消费者
bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
# 开启kafka的生产者
bin/kafka-console-producer.sh --broker-list bigdata-senior02.ibeifeng.com:9092 --topic orderTopic

# 查看topic
bin/kafka-topics.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --list

# 标记删除kafka的topic
bin/kafka-topics.sh --delete --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic

 

环境准备(我使用的单机伪分布模式)

首先开启zk,再开启kafka, 并启动kafka的服务

ZK_HOME/bin/zkServer.sh start

KAFKA_HOME/bin/kafka-server-start.sh -daemon config/server.properties &

# 创建topic
bin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic

# 查看topic
bin/kafka-topics.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --list

# 开启kafka的消费者
bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
# 开启kafka的生产者
bin/kafka-console-producer.sh --broker-list bigdata-senior02.ibeifeng.com:9092 --topic orderTopic

通过上面的测试,确保kafka可以正常运行

 

spark streaming 代码编写(scala2.11.8,spark2.0.0,kafka1.1)

maven依赖

<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId> // 这里要特别注意自己的scala版本,不然会运行时会不兼容,
<version>1.1.0</version>
</dependency>

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.1.0</version>
</dependency>

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>1.1.0</version>
</dependency>

<!--&lt;!&ndash; https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka &ndash;&gt;-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>

<!-- Spark Core -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.0</version>
</dependency>

<!-- Spark SQL -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.0</version>
</dependency>

<!-- Spark Streaming -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.0.0</version>
</dependency>

生产端数据生成
/**
* 这是一个数据生产端
*
* 开启服务器,broker, 如果不开启这个会提示没有找到broker
* bin/kafka-server-start.sh -daemon config/server.properties &
*
* 开启消费端
* bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
*/
//object OrderProductor {
// def main(args: Array[String]): Unit = {
//
// val topic = "orderTopic"
// val brokers = "bigdata-senior02.ibeifeng.com:9092"
//
// val props = new util.HashMap[String,Object]()
// props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,brokers)
// props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
// props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
//
// val producer = new KafkaProducer[String,String](props)
//
//
// // 每秒生成10个订单
// while(true){
// (1 to 10).foreach{messageNum =>
// // 地区id, 订单id, 订单金额, 订单时间
// val str = messageNum + "," + Random.nextInt(10)+","+Math.round(Random.nextDouble()*100)+","+ new Date().getTime
// val message = new ProducerRecord[String, String](topic,null,str)
// producer.send(message)
// }
//
// Thread.sleep(1000)
// }
//
// }
//
//}

// Produces some random words between 1 and 100.
object KafkaWordCountProducer {

def main(args: Array[String]) {

val topic = "orderTopic"
val brokers = "bigdata-senior02.ibeifeng.com:9092"
val messagesPerSec = 10
val wordsPerMessage = 5

val props = new util.HashMap[String,Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")

val producer = new KafkaProducer[String, String](props)

while(true) {
(1 to messagesPerSec.toInt).foreach { messageNum =>
val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
.mkString(" ")

val message = new ProducerRecord[String, String](topic, null, str)
producer.send(message)
}

Thread.sleep(1000)
}
}

}

消费数据
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._

/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
* <zkQuorum> is a list of one or more zookeeper servers that make quorum
* <group> is the name of kafka consumer group
* <topics> is a list of one or more kafka topics to consume from
* <numThreads> is the number of threads the kafka consumer should use
*
* Example:
* `$ bin/run-example
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03
* my-consumer-group topic1,topic2 1`
*/
object KafkaWordCount {
def main(args: Array[String]) {

val zkQuorum = "bigdata-senior02.ibeifeng.com:2181"
val group = "g1"
val topics = "orderTopic"
val numThreads = 2

val conf= new SparkConf().setAppName("StatelessWordCount").setMaster("local[2]") // 核数至少给2,否则不会完成计算
val ssc = new StreamingContext(conf,Seconds(2)) // 两秒进行一个批次

val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap
val wc = KafkaUtils.createStream(ssc,zkQuorum,group,topicMap).map(_._2)
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.foreachRDD(x=>x.foreach(println))

ssc.start()
ssc.awaitTermination()
}
}

以上就是spark streaming 消费 kafka的helloworld了
===============================================================================================================================
注意点:
1. 一定要选择兼容的版本,否则会出现各种各样奇奇怪怪的问题
2. 在这里卡了将近一周的时间,都是因为上面版本不兼容和导包的时候,出现的失误
3. 如果代码没有问题,没有出现运行时异常,看看版本的兼容性入手,或许更容易找到问题
代码在我的github上,有问题请留言
https://github.com/nulijiushimeili/spark01




























































































































































































以上是关于spark streaming 消费 kafka入门采坑解决过程的主要内容,如果未能解决你的问题,请参考以下文章

大数据Spark“蘑菇云”行动之spark streaming消费flume采集的kafka数据Directf方式

spark streaming从指定offset处消费Kafka数据

[Spark]Spark-streaming通过Receiver方式实时消费Kafka流程(Yarn-cluster)

如何管理Spark Streaming消费Kafka的偏移量

用canal同步binlog到kafka,spark streaming消费kafka topic乱码问题

kafka unclean 配置代表啥,会对 spark streaming 消费有什么影响?