码农眼中的数学之~矩阵专栏(附Numpy讲解)

Posted dotnetcrazy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了码农眼中的数学之~矩阵专栏(附Numpy讲解)相关的知识,希望对你有一定的参考价值。

 

2.矩阵专栏

吐槽一下:矩阵本身不难,但是矩阵的写作太蛋疼了 (⊙﹏⊙)汗 还好有Numpy,不然真的崩溃了...

LaTex有没有一个集成了很多常用公式以及推导或者含题库的在线编辑器?

代码裤子:https://github.com/lotapp/BaseCode

在线编程系:https://mybinder.org/v2/gh/lotapp/BaseCode/master

数学基础:https://www.cnblogs.com/dotnetcrazy/p/9294292.html

Numpy基础:https://www.cnblogs.com/dotnetcrazy/p/9309555.html

2.1.矩阵的定义

矩阵:是一个按照长方阵列排列的复数或实数集合。

通俗讲就是:把数排成m行n列后,然后用中括号把它们括住,这种形式的组合就是矩阵了~ eg:

$egin{bmatrix} &a_{11}&a_{12}&a_{13}&...&a_{1n} \\ &a_{21}&a_{22}&a_{23}&...&a_{2n} \\ &a_{31}&a_{32}&a_{33}&...&a_{3n} \\ &vdots&vdots&vdots&ddots&vdots\\ &a_{m1}&a_{m2}&a_{m3}&...&a_{mn} \\ end{bmatrix}$

比如上面这个示例就是一个m × n的矩阵(m行n列的矩阵),如果m=n那么就叫做n阶方阵,eg:

$egin{bmatrix} 1&2&3 \\ 4&5&6 \\ 7&8&9 end{bmatrix}$

这个就是3阶方阵


如果回到中学,老师肯定都是通过一次方程组来引入矩阵(逆天的老师是这么讲的):

$egin{cases}x_1+x_2=-1\\2x_1-x_2=4\\3x_1+5x_2=-7\\end{cases}$ ==> $egin{bmatrix}1&1\\2&-1\\3&5end{bmatrix}egin{bmatrix}x_1\\x_2end{bmatrix}=egin{bmatrix}-1\\4\\-7end{bmatrix}$

如果你方程组都忘记怎么解的话...好吧还是说下吧:“比如这题,可以先把x2移到右边,这样x1就等于一个表达式了(x1=-x2-1),然后带入第二个表达式就可以解出x1和x2了,一次的其实两个表达式就可以解出了,剩下的你可以把值带进去验证一下”

2.2.矩阵的运算(含幂运算)

2.2.1.加、减

加减比较简单,就是对应元素相加减 (只有行列都相同的矩阵才可以进行)

就不用麻烦的LaTex一行行打了,咱们用更方便的 NumPy 来演示一下矩阵加法(不懂代码的直接看结果,不影响阅读的)

Numpy有专门的矩阵函数(np.mat),用法和ndarray差不多,我们这边使用经常使用ndarray类型,基础忘记了可以去查看一下:Numpy基础

扩展:矩阵的加法运算满足交换律:A + B = B + A (乘法不行)

In [1]:
import numpy as np
In [2]:
# 创建两个集合
A = np.arange(1,10).reshape((3,3))
B = np.arange(9).reshape((3,3))

print(A)
print("-"*5)
print(B)
 
[[1 2 3]
 [4 5 6]
 [7 8 9]]
-----
[[0 1 2]
 [3 4 5]
 [6 7 8]]
In [3]:
# 加法
A + B
Out[3]:
array([[ 1,  3,  5],
       [ 7,  9, 11],
       [13, 15, 17]])
In [4]:
# 和A+B相等
B + A
Out[4]:
array([[ 1,  3,  5],
       [ 7,  9, 11],
       [13, 15, 17]])
In [5]:
# 减法
A - B
Out[5]:
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])
In [6]:
################ 变化来了 ################
In [7]:
# 之前说过 ”只有行列都相同的矩阵才可以进行“ 来验证一下
# 创建一个2行3列的矩阵
C = np.arange(6).reshape((2,3))
D = np.arange(6).reshape((3,2))

print(C)
print("-"*5)
print(D)
 
[[0 1 2]
 [3 4 5]]
-----
[[0 1]
 [2 3]
 [4 5]]
In [8]:
# 2行3列的矩阵 + 3行2列的矩阵
C + D # 不同形状的矩阵不能进行加运算
 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-8-bc97e29f7e31> in <module>()
      1 # 2行3列的矩阵 + 3行2列的矩阵
----> 2C + D # 不同形状的矩阵不能进行加运算

ValueError: operands could not be broadcast together with shapes (2,3) (3,2) 
In [9]:
C - D # 不同形状的矩阵不能进行减运算
 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-9-ca5169d0bf6c> in <module>()
----> 1C - D # 不同形状的矩阵不能进行减运算

ValueError: operands could not be broadcast together with shapes (2,3) (3,2) 
 

2.2.2.数乘、数除

这个也比较简单,就是和每个元素相乘,eg:2×A,A原本的每一个元素都扩大了两倍

数除其实就是乘以倒数(1/x)

In [10]:
print(A)
 
[[1 2 3]
 [4 5 6]
 [7 8 9]]
In [11]:
# 比如2×A,A原本的每一个元素都扩大了两倍
2 * A
Out[11]:
array([[ 2,  4,  6],
       [ 8, 10, 12],
       [14, 16, 18]])
In [12]:
print(A)
 
[[1 2 3]
 [4 5 6]
 [7 8 9]]
In [13]:
# 友情提醒:Numpy里面的运算基本上都是针对每一个元素
A / 2
Out[13]:
array([[0.5, 1. , 1.5],
       [2. , 2.5, 3. ],
       [3.5, 4. , 4.5]])
 

2.2.3.矩阵乘法

矩阵乘法还是要用LaTex演示一下的,不然有些朋友可能还是觉得比较抽象:(大家有什么好用的LaTex在线编辑器可以推荐的)

拿上面那个方程组来演示一下:

$egin{bmatrix}1&1\\2&-1\\3&5end{bmatrix}egin{bmatrix}x_1\\x_2end{bmatrix} ==> egin{cases}x_1+x_2\\2x_1-x_2\\3x_1+5x_2end{cases}$

稍微变化一下就更形象了:

$egin{bmatrix}1&1\\2&-1\\3&5end{bmatrix}egin{bmatrix}x_1&y_1\\x_2&y_2end{bmatrix} ==> egin{cases}x_1+x_2\\2x_1-x_2\\3x_1+5x_2end{cases} egin{cases}y_1+y_2\\2y_1-x_2\\3y_1+5y_2end{cases}==>egin{bmatrix}x_1+x_2&y_1+y_2\\2x_1-x_2&2y_1-y_2\\3x_1+5x_2&3y_1+5y_2end{bmatrix}$

举个简单的例子:A×B

$egin{bmatrix} 1&2 \\3&4 end{bmatrix}egin{bmatrix} 4&3 \\2&1 end{bmatrix}=egin{bmatrix} 1*4+2*2&1*3+2*1 \\3*4+4*2&3*3+4*1 end{bmatrix}=egin{bmatrix} 8&5 \\20&13 end{bmatrix}$

以后记不得怎么乘就自己推一下,值得注意的是:

两个矩阵的乘法仅当第一个矩阵A的列数(column)和另一个矩阵B的行数(row)相等才可以进行计算

你这样想就记得了:$egin{bmatrix} 1&2 \\3&4 end{bmatrix}egin{bmatrix} x_1 end{bmatrix} 还原成方程组就是这样egin{cases}1*x_1+2*?\\3*x_1+4*?end{cases}\\这是什么鬼?至少得这样吧:egin{bmatrix} 1&2 \\3&4 end{bmatrix}egin{bmatrix} x_1 \\x_2 end{bmatrix}$

In [14]:
# 通过代码看一看
A = np.array([[1,2],[3,4]])
B = np.array([[4,3],[2,1]])

print(A)
print("-"*5)
print(B)
 
[[1 2]
 [3 4]]
-----
[[4 3]
 [2 1]]
In [15]:
# 注意一下,Numpy里面的乘法默认是每个数对应相乘
# 如果是矩阵相乘可以使用dot()方法
# 或者你创建矩阵对象,这样×默认就是矩阵乘法了

A.dot(B) # 矩阵A×矩阵B
Out[15]:
array([[ 8,  5],
       [20, 13]])
 

程序验证了我们上面的运算结果,还得注意一下:

A×BB×A是不一样的,eg:B×A

$egin{bmatrix} 4&3 \\2&1 end{bmatrix}egin{bmatrix} 1&2 \\3&4 end{bmatrix}=egin{bmatrix} 4*1+3*3&4*2+3*4 \\2*1+1*3&2*2+1*4 end{bmatrix}=egin{bmatrix} 13&20 \\5&8 end{bmatrix}$

如果你乘着乘着就忘记到底怎么乘,就把右边的矩阵换成x1,x2,然后就会了

In [16]:
print(A)
print("-"*5)
print(B)
 
[[1 2]
 [3 4]]
-----
[[4 3]
 [2 1]]
In [17]:
B.dot(A) # 矩阵B×矩阵A
Out[17]:
array([[13, 20],
       [ 5,  8]])
In [18]:
################ 变化来了 ################
In [19]:
# 来验证一下”两个矩阵的乘法仅当第一个矩阵A的列数(column)和另一个矩阵D的行数(row)相等才可以进行计算“
print(A)
print("-"*5)
print(D)
 
[[1 2]
 [3 4]]
-----
[[0 1]
 [2 3]
 [4 5]]
In [20]:
# A有2列 D有3行
A.dot(D) # 不能乘
 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-20-c1a9f22a6f8d> in <module>()
      1 # A有2列 D有3行
----> 2A.dot(D) # 不能乘

ValueError: shapes (2,2) and (3,2) not aligned: 2 (dim 1) != 3 (dim 0)
In [21]:
# 你反过来就符合A的列数=D的行数了
D.dot(A)
Out[21]:
array([[ 3,  4],
       [11, 16],
       [19, 28]])
 

2.2.4.幂乘、幂运算

幂乘比较简单,就是每个元素开平方,不一定是方阵

必须是方阵才能进行幂运算,比如A²=A×A(矩阵相乘前提:第一个矩阵A的行=第二个矩阵A的列==>方阵

In [22]:
print(A)
print("-"*5)
print(C)
 
[[1 2]
 [3 4]]
-----
[[0 1 2]
 [3 4 5]]
In [23]:
# 幂乘(每个元素开平方) 
np.power(A,2) # 使用 A**2也一样
Out[23]:
array([[ 1,  4],
       [ 9, 16]])
In [24]:
# 幂乘(不一定是方阵) 
np.power(C,2)
Out[24]:
array([[ 0,  1,  4],
       [ 9, 16, 25]])
In [25]:
################ 方阵幂运算 ################
In [26]:
# A*A*A
np.linalg.matrix_power(A,3)
Out[26]:
array([[ 37,  54],
       [ 81, 118]])
In [27]:
# 不是方阵就over
np.linalg.matrix_power(C,3)
 
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-27-73f04ef7b54c> in <module>()
      1 # 不是方阵就over
----> 2np.linalg.matrix_power(C,3)

~/anaconda3/lib/python3.6/site-packages/numpy/matrixlib/defmatrix.py in matrix_power(M, n)
    137     M = asanyarray(M)
    138     if M.ndim != 2 or M.shape[0] != M.shape[1]:
--> 139raise ValueError("input must be a square array")
    140     if not issubdtype(type(n), N.integer):
    141         raise TypeError("exponent must be an integer")

ValueError: input must be a square array
 

来个小结 + 扩展

矩阵的加法运算满足交换律:A + B = B + A

矩阵的乘法满足结合律和对矩阵加法的分配律:

结合律:(AB)C = A(BC)

左分配律:(A + B)C = AC + BC

右分配律:C(A + B) = CA + CB

矩阵的乘法与数乘运算之间也满足类似结合律的规律;与转置之间则满足倒置的

分配律:c(A + B) = cA + cB

结合律:c(AB) = (cA)B = A(cB)

矩阵乘法不满足交换律 一般来说,矩阵A及B的乘积AB存在,但BA不一定存在,即使存在,大多数时候AB ≠ BA


2.3.特殊矩阵

2.3.1.零矩阵

零矩阵就是所有的元素都是0

$ egin{bmatrix} 0&0&0 \\ 0&0&0 \\ 0&0&0 end{bmatrix} $

同样的:全1矩阵就是所有元素都是1

$ egin{bmatrix} 1&1&1 \\ 1&1&1 \\ 1&1&1 end{bmatrix} $

In [1]:
import numpy as np
In [2]:
# 一维
# 可以指定类型 np.zeros(5,dtype=int)
np.zeros(5) # 完整写法:np.zeros((5,))
Out[2]:
array([0., 0., 0., 0., 0.])
In [3]:
# 二维
np.zeros((2,5))# 建议用元组,官方文档都是元组
Out[3]:
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])
In [4]:
# 三维 ==> 可以这么理解,2个2*5(2行5列)的矩阵
np.zeros((2,2,5))
Out[4]:
array([[[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]],

       [[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]]])
In [5]:
################ 全1矩阵 ################
In [6]:
# `np.ones(tuple)` 用法和`np.zeros(tuple)`差不多
# 可以指定类型 np.ones(5,dtype=int)
# 一维
np.ones(5) # 完整写法 np.ones((5,))
Out[6]:
array([1., 1., 1., 1., 1.])
In [7]:
# 二维,传一个shape元组
np.ones((2,5))
Out[7]:
array([[1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1.]])
In [8]:
# 三维 可以理解为两个二维数组
np.ones((2,2,5))
Out[8]:
array([[[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]],

       [[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]]])
In [9]:
################ 指定值矩阵 ################
In [10]:
# 创建指定值的矩阵:
np.full((3,5),222)
Out[10]:
array([[222, 222, 222, 222, 222],
       [222, 222, 222, 222, 222],
       [222, 222, 222, 222, 222]])
In [11]:
# 创建指定值的矩阵,浮点类型
np.full((3,5),222.0)
Out[11]:
array([[222., 222., 222., 222., 222.],
       [222., 222., 222., 222., 222.],
       [222., 222., 222., 222., 222.]])
 

2.3.3.转置矩阵

转置矩阵 :将矩阵的行列互换得到的新矩阵(行列式不变)

m行×n列的矩阵行和列交换后就变成了n行×m列的矩阵,eg:3行×2列 ==> 2行×3列

$egin{bmatrix}1&2 \\3&4 \\5&6end{bmatrix}^T ==> egin{bmatrix}1&3&5 \\2&4&6end{bmatrix}$

矩阵的转置满足分配律:

$(A + B)^T = A^T + B^T$

$(AB)^T = B^TA^T$

再次提醒:两个矩阵的乘法仅当第一个矩阵A的列数(column)和另一个矩阵B的行数(row)相等才可以进行计算

In [12]:
A = np.arange(6).reshape((2,3))

print(A)
 
[[0 1 2]
 [3 4 5]]
In [13]:
# 转置矩阵(行列互换)
A.T
Out[13]:
array([[0, 3],
       [1, 4],
       [2, 5]])
In [14]:
B = np.random.randint(10,size=(2,3))

print(B)
 
[[4 4 7]
 [5 3 9]]
In [15]:
################ 验证系列 ################
In [16]:
# 验证一下(A+B)^T=A^T+B^T
print(A.T + B.T)
print("-"*5)
print((A+B).T)
 
[[ 4  8]
 [ 5  7]
 [ 9 14]]
-----
[[ 4  8]
 [ 5  7]
 [ 9 14]]
In [17]:
# 验证一下(A+B)^T=A^T+B^T
# 其实也再一次验证了,Numpy运算符默认是对每一个元素的操作
(A+B).T == A.T + B.T
Out[17]:
array([[ True,  True],
       [ True,  True],
       [ True,  True]])
In [18]:
################ 验证系列 ################
In [19]:
# 把A变成3*2的矩阵,不够元素用0补
# reshape:有返回值,不对原始多维数组进行修改
# resize:无返回值,会对原始多维数组进行修改
A.resize(3,2)

print(A)
print(B)
 
[[0 1]
 [2 3]
 [4 5]]
[[4 4 7]
 [5 3 9]]
In [20]:
# 验证(AB)^T=B^T×A^T
print((A.dot(B)).T)
print("-"*5)
print((B.T).dot(A.T))
 
[[ 5 23 41]
 [ 3 17 31]
 [ 9 41 73]]
-----
[[ 5 23 41]
 [ 3 17 31]
 [ 9 41 73]]
 

2.3.3.上三角矩阵和下三角矩阵

上三角矩阵 :主对角线以下都是零的方阵

$egin{bmatrix} 2&9&4&7 \\ 0&7&3&3 \\ 0&0&6&1 \\ 0&0&0&1 end{bmatrix}$

下三角矩阵 :主对角线以上都是零的方阵

$egin{bmatrix} 2&0&0&0 \\ 3&7&0&0 \\ 5&6&7&0 \\ 1&2&3&4 end{bmatrix}$

性质(行列式后面会说)

  1. 上(下)三角矩阵的行列式为对角线元素相乘
  2. 上(下)三角矩阵乘以系数后也是上(下)三角矩阵
  3. 上(下)三角矩阵间的加减法和乘法运算的结果仍是上(下)三角矩阵
  4. 上(下)三角矩阵的逆矩阵也仍然是上(下)三角矩阵
In [21]:
# 创建一个5行4列矩阵
A = np.random.randint(10,size=(4,4))

print(A)
 
[[3 5 2 3]
 [7 2 9 6]
 [5 1 7 6]
 [1 2 8 4]]
In [22]:
# 上三角
np.triu(A)
Out[22]:
array([[3, 5, 2, 3],
       [0, 2, 9, 6],
       [0, 0, 7, 6],
       [0, 0, 0, 4]])
In [23]:
# 下三角
np.tril(A)
Out[23]:
array([[3, 0, 0, 0],
       [7, 2, 0, 0],
       [5, 1, 7, 0],
       [1, 2, 8, 4]])
In [24]:
# 验证一下最后一个性质
# 三角矩阵的逆矩阵也仍然是三角矩阵
print(np.triu(A).T)
print(‘-‘*5)
print(np.tril(A).T)
 
[[3 0 0 0]
 [5 2 0 0]
 [2 9 7 0]
 [3 6 6 4]]
-----
[[3 7 5 1]
 [0 2 1 2]
 [0 0 7 8]
 [0 0 0 4]]
 

2.3.4.对角矩阵

对角矩阵 :主对角线之外的元素皆为0的方阵 (单位矩阵属于对角矩阵中的一种)

$egin{bmatrix}0&0&0 \\0&0&0 \\0&0&0end{bmatrix} egin{bmatrix}1&0&0 \\0&1&0 \\0&0&1end{bmatrix} egin{bmatrix}2&0&0 \\0&2&0 \\0&0&2end{bmatrix} egin{bmatrix}3&0&0 \\0&9&0 \\0&0&6end{bmatrix}$

扩充:对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵

而且有意思的是:对角矩阵的矩阵幂运算等于其对应元素的幂运算

$egin{bmatrix}3&0&0 \\0&9&0 \\0&0&6end{bmatrix}^n = egin{bmatrix}3^n&0&0 \\0&9^n&0 \\0&0&6^nend{bmatrix}$

In [25]:
# 简单创建
np.diag([3,9,6])
Out[25]:
array([[3, 0, 0],
       [0, 9, 0],
       [0, 0, 6]])
In [26]:
np.diag([2,2,2])
Out[26]:
array([[2, 0, 0],
       [0, 2, 0],
       [0, 0, 2]])
In [27]:
################ 验证系列 ################
In [28]:
# np.diag?
print(A)

# 获取对角元素,然后再生成对角矩阵
B = np.diag(A.diagonal()) #或者 np.diag(np.diag(A))

print(B)
 
[[3 5 2 3]
 [7 2 9 6]
 [5 1 7 6]
 [1 2 8 4]]
[[3 0 0 0]
 [0 2 0 0]
 [0 0 7 0]
 [0 0 0 4]]
In [29]:
B.dot(B).dot(B)
Out[29]:
array([[ 27,   0,   0,   0],
       [  0,   8,   0,   0],
       [  0,   0, 343,   0],
       [  0,   0,   0,  64]])
In [30]:
# 对角矩阵的矩阵幂运算等于其对应元素的幂运算
B**3
Out[30]:
array([[ 27,   0,   0,   0],
       [  0,   8,   0,   0],
       [  0,   0, 343,   0],
       [  0,   0,   0,  64]])
 

2.3.5.单位矩阵

单位矩阵 :单位矩阵是个方阵(行列相等),从左上角到右下角的对角线(称为主对角线)上的元素均为1。其他全都为0,eg:

$ egin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 end{bmatrix} $

任何矩阵 x 单位矩阵 都等于其本身 (反过来也一样(这个和1×a=a×1一个道理))

In [31]:
# 定义一个2行的单位矩阵(列默认和行一致)
# np.eye(rows,columns=rows)
np.eye(2)
Out[31]:
array([[1., 0.],
       [0., 1.]])
In [32]:
################ 验证扩展 ################
In [33]:
# 可以指定类型
B = np.eye(4,dtype=int)

print(B)
 
[[1 0 0 0]
 [0 1 0 0]
 [0 0 1 0]
 [0 0 0 1]]
In [34]:
print(A)
 
[[3 5 2 3]
 [7 2 9 6]
 [5 1 7 6]
 [1 2 8 4]]
In [35]:
# 任何矩阵 x 单位矩阵 都等于其本身
A.dot(B)
Out[35]:
array([[3, 5, 2, 3],
       [7, 2, 9, 6],
       [5, 1, 7, 6],
       [1, 2, 8, 4]])
In [36]:
# 反过来也一样(这个和1*a=a*1一个道理)
B.dot(A)
Out[36]:
array([[3, 5, 2, 3],
       [7, 2, 9, 6],
       [5, 1, 7, 6],
       [1, 2, 8, 4]])
 

2.3.6.对称矩阵

对称矩阵 :元素以主对角线为对称轴对应相等的方阵

对称矩阵的转置是它本身:$A^T=A$

In [37]:
A = np.random.randint(10,size=(4,4))

print(A)
 
[[0 1 6 9]
 [1 2 4 7]
 [4 8 7 9]
 [3 6 8 0]]
In [38]:
B = np.triu(A)
B += B.T - np.diag(A.diagonal())
print(B)
 
[[0 1 6 9]
 [1 2 4 7]
 [6 4 7 9]
 [9 7 9 0]]
In [39]:
# 验证一下
B.T == B
Out[39]:
array([[ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True],
       [ True,  True,  True,  True]])
In [40]:
################ 分步解释 ################
In [41]:
# 创建上三角矩阵
B = np.triu(A)

print(B)
 
[[0 1 6 9]
 [0 2 4 7]
 [0 0 7 9]
 [0 0 0 0]]
In [42]:
# 上三角+它的逆矩阵(发现距离对角矩阵只是多加一次对角线上的元素)
B += B.T

print(B)
 
[[ 0  1  6  9]
 [ 1  4  4  7]
 [ 6  4 14  9]
 [ 9  7  9  0]]
In [43]:
# 所以减去对角线上的元素,得到对角矩阵
B - np.diag(A.diagonal())
Out[43]:
array([[0, 1, 6, 9],
       [1, 2, 4, 7],
       [6, 4, 7, 9],
       [9, 7, 9, 0]])
 

2.4.逆矩阵

逆矩阵 :设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E 则我们称B是A的逆矩阵(表示为$A^{-1}$),而A则被称为可逆矩阵

通俗话讲就是:原矩阵×逆矩阵=逆矩阵×原矩阵=单位矩阵

2.4.1.消元法

可能一看到逆矩阵,大家就想到代数余子式 ,不过逆天要说的是,代数余子式就和我们程序员面试题一样,有些题目就是又繁琐实际运用又没多大意义的题目一样,很多时候面试官都不看面试题一眼,同样的那些出题老师自己解题一般都不会使用。我这边介绍一下方便简单的方法“消元法

比如求$egin{bmatrix}3&2 \\1&2end{bmatrix}^{-1}$,就可以表示为:

$egin{bmatrix}3&2 \\1&2end{bmatrix}egin{bmatrix}x_{11}&x_{12} \\x_{21}&x_{22}end{bmatrix}=egin{bmatrix}1&0 \\0&1end{bmatrix}$

转换成方程组:

$egin{cases} egin{bmatrix}3&2 \\1&2end{bmatrix}egin{bmatrix}x_{11} \\x_{21}end{bmatrix}=egin{bmatrix}1 \\0end{bmatrix}\\ egin{bmatrix}3&2 \\1&2end{bmatrix}egin{bmatrix}x_{12} \\x_{22}end{bmatrix}=egin{bmatrix}0 \\1end{bmatrix} end{cases} ==> 求方程组egin{cases}3x_{11}+2x_{21}=1\\1x_{11}+2x_{21}=0end{cases}和egin{cases}3x_{12}+2x_{22}=0\\1x_{12}+2x_{22}=1end{cases}的解$

这样很轻松就能解出逆矩阵了

$egin{cases}x_{11}=frac{1}{2}\\x_{21}=-frac{1}{4} end{cases}\\egin{cases}x_{12}=-frac{1}{2}\\x_{22}=frac{3}{4} end{cases}\\ ==> egin{bmatrix}frac{1}{2}&-frac{1}{2} \\-frac{1}{4}&frac{3}{4} end{bmatrix}$

In [44]:
A = np.array([[3,2],[1,2]])

print(A)
 
[[3 2]
 [1 2]]
In [45]:
# 求A的逆矩阵
np.linalg.inv(A)
Out[45]:
array([[ 0.5 , -0.5 ],
       [-0.25,  0.75]])
 

2.4.2.二阶方阵公式

如果只是2阶方阵,有更简单的公式(只能2阶使用,而消元法不受限制)矩阵是否可逆就看分母是否为0

$large{egin{bmatrix}a_{11}&a_{12} \\a_{21}&a_{22}end{bmatrix}=frac{1}{a_{11}a_{22}-a_{12}a_{21}}egin{bmatrix}a_{22}&-a_{12} \\-a_{21}&a_{11}end{bmatrix}}$

比如求$egin{bmatrix}3&2 \\1&2end{bmatrix}^{-1}$:

$frac{1}{3×2-2×1}egin{bmatrix}2&-2 \\-1&3end{bmatrix}=egin{bmatrix}frac{1}{2}&-frac{1}{2} \\-frac{1}{4}&frac{3}{4} end{bmatrix}$

扩展系列:伪逆矩阵

非方阵可以求 伪逆矩阵 AXA=A,XAX=X

判断矩阵是否可逆:

$$detegin{bmatrix}a_{11}&a_{12} \\a_{21}&a_{22}end{bmatrix}=a_{11}a_{12}-a_{12}a_{21}\\detegin{bmatrix}a_{11}&a_{12}&a_{13} \\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}end{bmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}$$

方法很多(比如还可以通过余子式),公式其实有规律,你可以先摸索下(给个提示):

正负
a11a22 +
a12a21 -
正负
a11a22a33 +
a11a23a32 -
a12a21a33 -
a12a23a31 +
a13a21a32 +
a13a22a31 -

程序比较简单:np.linalg.det(A)

In [46]:
A = np.array([[7, 3, 6],[5, 3, 1]])

print(A)
 
[[7 3 6]
 [5 3 1]]
In [47]:
# 不等于0就是可逆
np.linalg.det(A)
 
---------------------------------------------------------------------------
LinAlgError                               Traceback (most recent call last)
<ipython-input-47-2ce8e7bdf499> in <module>()
      1 # 不等于0就是可逆
----> 2np.linalg.det(A)

~/anaconda3/lib/python3.6/site-packages/numpy/linalg/linalg.py in det(a)
   1869     a = asarray(a)
   1870     _assertRankAtLeast2(a)
-> 1871_assertNdSquareness(a)
   1872     t, result_t = _commonType(a)
   1873     signature = ‘D->D‘ if isComplexType(t) else ‘d->d‘

~/anaconda3/lib/python3.6/site-packages/numpy/linalg/linalg.py in _assertNdSquareness(*arrays)
    209     for a in arrays:
    210         if max(a.shape[-2:]) != min(a.shape[-2:]):
--> 211raise LinAlgError(‘Last 2 dimensions of the array must be square‘)
    212 
    213 def _assertFinite(*arrays):

LinAlgError: Last 2 dimensions of the array must be square
In [48]:
# 必须是方阵的验证
np.linalg.inv(A)
 
---------------------------------------------------------------------------
LinAlgError                               Traceback (most recent call last)
<ipython-input-48-0af3c81a492f> in <module>()
      1 # 必须是方阵的验证
----> 2np.linalg.inv(A)

~/anaconda3/lib/python3.6/site-packages/numpy/linalg/linalg.py in inv(a)
    521     a, wrap = _makearray(a)
    522     _assertRankAtLeast2(a)
--> 523_assertNdSquareness(a)
    524     t, result_t = _commonType(a)
    525 

~/anaconda3/lib/python3.6/site-packages/numpy/linalg/linalg.py in _assertNdSquareness(*arrays)
    209     for a in arrays:
    210         if max(a.shape[-2:]) != min(a.shape[-2:]):
--> 211raise LinAlgError(‘Last 2 dimensions of the array must be square‘)
    212 
    213 def _assertFinite(*arrays):

LinAlgError: Last 2 dimensions of the array must be square
In [49]:
# 有时候还是需要求逆矩阵
# 那就可以求它的伪逆矩阵
X = np.linalg.pinv(A)

print(X)
 
[[-0.00632911  0.15189873]
 [-0.05696203  0.16708861]
 [ 0.20253165 -0.26075949]]
In [50]:
# A*X*A=A
A.dot(X).dot(A)
Out[50]:
array([[7., 3., 6.],
       [5., 3., 1.]])
In [51]:
# X*A*X=X
X.dot(A).dot(X)
Out[51]:
array([[-0.00632911,  0.15189873],
       [-0.05696203,  0.16708861],
       [ 0.20253165, -0.26075949]])
In [52]:
################ 简单说下mat ################
In [53]:
# 创建一个矩阵
A = np.mat([[3,2],[1,2]])

print(A)
type(A)
 
[[3 2]
 [1 2]]
Out[53]:
numpy.matrixlib.defmatrix.matrix
In [54]:
# 求它的逆矩阵
A.I
Out[54]:
matrix([[ 0.5 , -0.5 ],
        [-0.25,  0.75]])
In [55]:
# A^T
A.T
Out[55]:
matrix([[3, 1],
        [2, 2]])
In [56]:
# *默认就是矩阵乘法
A * A
Out[56]:
matrix([[11, 10],
        [ 5,  6]])
In [57]:
# 更多自己查看下帮助文档把,用法和array基本上一样,
# 我这边只是简单提一下,怕你们不去看(所有和矩阵相关的东西,里面都有封装,很方便)
np.mat?

以上是关于码农眼中的数学之~矩阵专栏(附Numpy讲解)的主要内容,如果未能解决你的问题,请参考以下文章

[Python系列-10]:Python之人工智能 - 基本工具 -4- 数组与矩阵数学工具Numpy

python实战应用讲解-numpy专题篇实用小技巧(附python示例代码)

python实战应用讲解-numpy专题篇numpy常见函数使用示例(附python示例代码)

架构师眼中的高可用架构设计之道

python实战应用讲解-numpy专题篇常见问题解惑(十五)(附python示例代码)

Python之基础数学知识