转:谱聚类
Posted lm3306
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了转:谱聚类相关的知识,希望对你有一定的参考价值。
广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。顺便说一下,对于任意矩阵只存在奇异值分解,不存在特征值分解。对于正定的对称矩阵,奇异值就是特征值,奇异向量就是特征向量。
传统的聚类算法,如K-Means、EM算法都是建立在凸球形样本空间上,当样本空间不为凸时,算法会陷入局部最优,最终结果受初始参数的选择影响比较大。而谱聚类可以在任意形状的样本空间上聚类,且收敛于全局最优解。
谱聚类和CHAMELEON聚类很像,都是把样本点的相似度放到一个带权无向图中,采用“图划分”的方法进行聚类。只是谱聚类算法在进行图划分的时候发现计算量很大,转而求特征值去了,而且最后还在几个小特征向量组成的矩阵上进行了K-Means聚类。
Simply speaking,谱聚类算法分为3步:
- 构造一个N×N的权值矩阵W,Wij表示样本i和样本j的相似度,显然W是个对称矩阵。相似度的计算方法很多了,你可以用欧拉距离、街区距离、向量夹角、皮尔森相关系数等。并不是任意两个点间的相似度都要表示在图上,我们希望的权值图是比较稀疏的,有2种方法:权值小于阈值的认为是0;K最邻近方法,即每个点只和跟它最近的k个点连起来,CHAMELEON算法的第1阶段就是这么干的。再构造一个对角矩阵D,Dii为W第i列元素之和。最后构造矩阵L=D-W。可以证明L是个半正定和对称矩阵。
- 求L的前K小特征值对应的特征向量(这要用到奇异值分解了)。把K个特征向量放在一起构造一个N×K的矩阵M。
- 把M的每一行当成一个新的样本点,对这N个新的样本点进行K-Means聚类。
从文件读入样本点,最终算得矩阵L
#include<math.h> #include<string.h> #include"matrix.h" #include"svd.h" #define N 19 //样本点个数 #define K 4 //K-Means算法中的K #define T 0.1 //样本点之间相似度的阈值 double sample[N][2]; //存放所有样本点的坐标(2维的) void readSample( char *filename){ FILE *fp; if ((fp= fopen (filename, "r" ))==NULL){ perror ( "fopen" ); exit (0); } char buf[50]={0}; int i=0; while ( fgets (buf, sizeof (buf),fp)!=NULL){ char *w= strtok (buf, " " ); double x= atof (w); w= strtok (NULL, " " ); double y= atof (w); sample[i][0]=x; sample[i][1]=y; i++; memset (buf,0x00, sizeof (buf)); } assert (i==N); fclose (fp); } double ** getSimMatrix(){ //为二维矩阵申请空间 double **matrix=getMatrix(N,N); //计算样本点两两之间的相似度,得到矩阵W int i,j; for (i=0;i<N;i++){ matrix[i][i]=1; for (j=i+1;j<N;j++){ double dist= sqrt ( pow (sample[i][0]-sample[j][0],2)+ pow (sample[i][1]-sample[j][1],2)); double sim=1.0/(1+dist); if (sim>T){ matrix[j][i]=sim; matrix[i][j]=sim; } } } //计算L=D-W for (j=0;j<N;j++){ double sum=0; for (i=0;i<N;i++){ sum+=matrix[i][j]; if (i!=j) matrix[i][j]=0-matrix[i][j]; } matrix[j][j]=matrix[j][j]-sum; } return matrix; } int main(){ char *file= "/home/orisun/data" ; readSample(file); double **L=getSimMatrix(); printMatrix(L,N,N); double **M=singleVector(L,N,N,5); printMatrix(M,N,5); freeMatrix(L,N); return 0; } |
L已是对称矩阵,直接奇异值分解的得到的就是特征向量
最后是运行KMeans的Java代码
package ai; public class Global { //计算两个向量的欧氏距离 public static double calEuraDist( double [] arr1, double [] arr2, int len){ double result= 0.0 ; for ( int i= 0 ;i<len;i++){ result+=Math.pow(arr1[i]-arr2[i], 2.0 ); } return Math.sqrt(result); } } |
package ai; public class DataObject { String docname; double [] vector; int cid; boolean visited; public DataObject( int len){ vector= new double [len]; } public String getName() { return docname; } public void setName(String docname) { this .docname = docname; } public double [] getVector() { return vector; } public void setVector( double [] vector) { this .vector = vector; } public int getCid() { return cid; } public void setCid( int cid) { this .cid = cid; } public boolean isVisited() { return visited; } public void setVisited( boolean visited) { this .visited = visited; } } |
package ai; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; public class DataSource { ArrayList<DataObject> objects; int row; int col; public void readMatrix(File dataFile) { try { FileReader fr = new FileReader(dataFile); BufferedReader br = new BufferedReader(fr); String line = br.readLine(); String[] words = line.split( "\\s+" ); row = Integer.parseInt(words[ 0 ]); // row=1000; col = Integer.parseInt(words[ 1 ]); objects = new ArrayList<DataObject>(row); for ( int i = 0 ; i < row; i++) { DataObject object = new DataObject(col); line = br.readLine(); words = line.split( "\\s+" ); for ( int j = 0 ; j < col; j++) { object.getVector()[j] = Double.parseDouble(words[j]); } objects.add(object); } br.close(); } catch (IOException e) { e.printStackTrace(); } } public void readRLabel(File file) { try { FileReader fr = new FileReader(file); BufferedReader br = new BufferedReader(fr); String line = null ; for ( int i = 0 ; i < row; i++) { line = br.readLine(); objects.get(i).setName(line.trim()); } } catch (IOException e) { e.printStackTrace(); } } public void printResult(ArrayList<DataObject> objects, int n) { //DBScan是从第1类开始,K-Means是从第0类开始 // for (int i =0; i <n; i++) { for ( int i= 1 ;i<=n;i++){ System.out.println( "=============属于第" +i+ "类的有:===========================" ); Iterator<DataObject> iter = objects.iterator(); while (iter.hasNext()) { DataObject object = iter.next(); int cid=object.getCid(); if (cid==i){ System.out.println(object.getName()); // switch(Integer.parseInt(object.getName())/1000){ // case 0: // System.out.println(0); // break; // case 1: // System.out.println(1); // break; // case 2: // System.out.println(2); // break; // case 3: // System.out.println(3); // break; // case 4: // System.out.println(4); // break; // case 5: // System.out.println(5); // break; // default: // System.out.println("Go Out"); // break; // } } } } } } |
package ai; import java.io.File; import java.util.ArrayList; import java.util.Iterator; import java.util.Random; public class KMeans { int k; // 指定划分的簇数 double mu; // 迭代终止条件,当各个新质心相对于老质心偏移量小于mu时终止迭代 double [][] center; // 上一次各簇质心的位置 int repeat; // 重复运行次数 double [] crita; // 存放每次运行的满意度 public KMeans( int k, double mu, int repeat, int len) { this .k = k; this .mu = mu; this .repeat = repeat; center = new double [k][]; for ( int i = 0 ; i < k; i++) center[i] = new double [len]; crita = new double [repeat]; } // 初始化k个质心,每个质心是len维的向量,每维均在left--right之间 public void initCenter( int len, ArrayList<DataObject> objects) { Random random = new Random(System.currentTimeMillis()); int [] count = new int [k]; // 记录每个簇有多少个元素 Iterator<DataObject> iter = objects.iterator(); while (iter.hasNext()) { DataObject object = iter.next(); int id = random.nextInt( 10000 )%k; count[id]++; for ( int i = 0 ; i < len; i++) center[id][i] += object.getVector()[i]; } for ( int i = 0 ; i < k; i++) { for ( int j = 0 ; j < len; j++) { center[i][j] /= count[i]; } } } // 把数据集中的每个点归到离它最近的那个质心 public void classify(ArrayList<DataObject> objects) { Iterator<DataObject> iter = objects.iterator(); while (iter.hasNext()) { DataObject object = iter.next(); double [] vector = object.getVector(); int len = vector.length; int index = 0 ; double neardist = Double.MAX_VALUE; for ( int i = 0 ; i < k; i++) { double dist = Global.calEuraDist(vector, center[i], len); // 使用欧氏距离 if (dist < neardist) { neardist = dist; index = i; } } object.setCid(index); } } // 重新计算每个簇的质心,并判断终止条件是否满足,如果不满足更新各簇的质心,如果满足就返回true.len是数据的维数 public boolean calNewCenter(ArrayList<DataObject> objects, int len) { boolean end = true ; int [] count = new int [k]; // 记录每个簇有多少个元素 double [][] sum = new double [k][]; for ( int i = 0 ; i < k; i++) sum[i] = new double [len]; Iterator<DataObject> iter = objects.iterator(); while (iter.hasNext()) { DataObject object = iter.next(); int id = object.getCid(); count[id]++; for ( int i = 0 ; i < len; i++) sum[id][i] += object.getVector()[i]; } for ( int i = 0 ; i < k; i++) { if (count[i] != 0 ) { for ( int j = 0 ; j < len; j++) { sum[i][j] /= count[i]; } } // 簇中不包含任何点,及时调整质心 else { int a=(i+ 1 )%k; int b=(i+ 3 )%k; int c=(i+ 5 )%k; for ( int j = 0 ; j < len; j++) { center[i][j] = (center[a][j]+center[b][j]+center[c][j])/ 3 ; } } } for ( int i = 0 ; i < k; i++) { // 只要有一个质心需要移动的距离超过了mu,就返回false if (Global.calEuraDist(sum[i], center[i], len) >= mu) { end = false ; break ; } } if (!end) { for ( int i = 0 ; i < k; i++) { for ( int j = 0 ; j < len; j++) center[i][j] = sum[i][j]; } } return end; } // 计算各簇内数据和方差的加权平均,得出本次聚类的满意度.len是数据的维数 public double getSati(ArrayList<DataObject> objects, int len) { double satisfy = 0.0 ; int [] count = new int [k]; double [] ss = new double [k]; Iterator<DataObject> iter = objects.iterator(); while (iter.hasNext()) { DataObject object = iter.next(); int id = object.getCid(); count[id]++; for ( int i = 0 ; i < len; i++) ss[id] += Math.pow(object.getVector()[i] - center[id][i], 2.0 ); } for ( int i = 0 ; i < k; i++) { satisfy += count[i] * ss[i]; } return satisfy; } public double run( int round, DataSource datasource, int len) { System.out.println( "第" + round + "次运行" ); initCenter(len,datasource.objects); classify(datasource.objects); while (!calNewCenter(datasource.objects, len)) { classify(datasource.objects); } datasource.printResult(datasource.objects, k); double ss = getSati(datasource.objects, len); System.out.println( "加权方差:" + ss); return ss; } public static void main(String[] args) { DataSource datasource = new DataSource(); datasource.readMatrix( new File( "/home/orisun/test/dot.mat" )); datasource.readRLabel( new File( "/home/orisun/test/dot.rlabel" )); int len = datasource.col; // 划分为4个簇,质心移动小于1E-8时终止迭代,重复运行7次 KMeans km = new KMeans( 4 , 1E- 10 , 7 , len); int index = 0 ; double minsa = Double.MAX_VALUE; for ( int i = 0 ; i < km.repeat; i++) { double ss = km.run(i, datasource, len); if (ss < minsa) { minsa = ss; index = i; } } System.out.println( "最好的结果是第" + index + "次。" ); } } |
以上是关于转:谱聚类的主要内容,如果未能解决你的问题,请参考以下文章