HDU 1018Big Number(大数的阶乘的位数,利用公式)
Posted yinbiao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 1018Big Number(大数的阶乘的位数,利用公式)相关的知识,希望对你有一定的参考价值。
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1018
Big Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42715 Accepted Submission(s): 20844
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2
10
20
Sample Output
7
19
Source
分析:
问你一个数的阶乘是多少位
n比较大
是大数问题
一开始不知道写
看了一下大佬的博客
具体分析;
一个正整数a的位数等于(int)log10(a) + 1
假设A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
=log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有)
=log10(1)+log10(2)+log10(3)+......+log10(n)
假设A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
=log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有)
=log10(1)+log10(2)+log10(3)+......+log10(n)
code:
#include<bits/stdc++.h> using namespace std; typedef long long LL; #define max_v 105 int main() { /* 一个正整数a的位数等于(int)log10(a) + 1 假设A=n!=1*2*3*......*n,那么我们要求的就是 (int)log10(A)+1,而: log10(A) =log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有) =log10(1)+log10(2)+log10(3)+......+log10(n) */ int n,t; scanf("%d",&t); while(t--) { scanf("%d",&n); double sum=0; for(int i=1; i<=n; i++) { sum+=log10((double)i); } printf("%d ",(int)sum+1); } return 0; }
以上是关于HDU 1018Big Number(大数的阶乘的位数,利用公式)的主要内容,如果未能解决你的问题,请参考以下文章
斯特林公式-Stirling公式(取N阶乘近似值)-HDU1018-Big Number 牛客网NowCoder 2018年全国多校算法寒假训练营练习比赛(第三场)A.不凡的夫夫