AtCoder Grand Contest 006 F - Blackout

Posted yuzao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder Grand Contest 006 F - Blackout相关的知识,希望对你有一定的参考价值。

Description

(n*n) 的棋盘上给出 (m) 个黑点,若 ((x,y)),((y,z)) 都是黑点,那么 ((z,x)) 也会变成黑点,求最后黑点的数量
题面

Solution

把点 ((x,y)) 看作一条从 (x)(y) 的有向边
我们分析性质:
如果存在一个自环,那么这个点所在的连通块就会变成一个完全图
原因是和这个点有单向边的点都会变成双向边,有双向边之后就会形成自环,那么就可以一直重复这个过程,就变成了完全图

我们想办法判断图中有没有自环,我们发现:对原图进行三染色之后:
1.如果产生了矛盾,那么就有自环,就会形成一个完全图,这个连通块的答案就是点数的平方
2.如果染色完成了,那么算出产生的边的个数和原图边的个数就行了

对于第二种情况,还需要一些性质:
首先如果 (color[x]±1 mod 3 =color[u])(x,u) 在同一连通块内,则一定有边存在
所以设 (a[x]) 表示颜色为 (x) 的点的数量,答案就是 (a[1]*a[2]+a[2]*a[3]+a[1]*a[3])

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+10;
int n,m,head[N],nxt[N*2],to[N*2],num=0,c[N],E=0,a[4],dis[N*2];
bool flag=0,vis[N*2];
vector<int>S;
inline void link(int x,int y,int z){
    nxt[++num]=head[x];to[num]=y;head[x]=num;dis[num]=z;}
inline void dfs(int x){
    S.push_back(x);
    for(int i=head[x];i;i=nxt[i]){
        int u=to[i],t=c[x]+dis[i];
        if(!vis[i])vis[i]=1,E++;
        if(!t)t=3;if(t==4)t=1;
        if(c[u]){
            if(c[u]!=t)flag=1;
        }
        else c[u]=t,dfs(u);
    }
}
int main(){
    freopen("pp.in","r",stdin);
    freopen("pp.out","w",stdout);
    int x,y;ll ans=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        link(x,y,1);link(y,x,-1);
    }
    for(int i=1;i<=n;i++){
        if(!c[i]){
            vector<int>().swap(S);c[i]=1;flag=0;E=0;
            dfs(i);
            memset(a,0,sizeof(a));
            for(int j=S.size()-1;j>=0;j--)a[c[S[j]]]++;
            if(flag)ans+=(ll)S.size()*S.size();
            else if(!a[1] || !a[2] || !a[3])ans+=E/2;
            else ans+=1ll*a[1]*a[2]+1ll*a[2]*a[3]+1ll*a[1]*a[3];
        }
    }
    cout<<ans<<endl;
    return 0;
}

以上是关于AtCoder Grand Contest 006 F - Blackout的主要内容,如果未能解决你的问题,请参考以下文章

AtCoder Grand Contest 006 F - Blackout

[Atcoder Grand 006 C] Rabbit Exercise 解题报告 (期望DP)

markdown AtCoder Grand Contest 016

AtCoder Grand Contest 005

AtCoder Grand Contest 008 题解

AtCoder Grand Contest 025 Problem D