第三十二篇 玩转数据结构——AVL树
Posted xuezou
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第三十二篇 玩转数据结构——AVL树相关的知识,希望对你有一定的参考价值。
1.. 平衡二叉树
-
平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1。
-
平衡二叉树的高度和节点数量之间的关系也是O(logn)
-
为二叉树标注节点高度并计算平衡因子
-
- AVL树是一棵平衡二叉树
2.. 实现AVL树的业务逻辑
-
import java.util.ArrayList; public class AVLTree<K extends Comparable<K>, V> { private class Node { public K key; public V value; public Node left; public Node right; public int height; // 构造函数 public Node(K key, V value) { this.key = key; this.value = value; left = null; right = null; height = 1; } } private Node root; private int size; // 构造函数 public AVLTree() { root = null; size = 0; } // 实现getSize方法 public int getSize() { return size; } // 实现isEmpty方法 public boolean isEmpty() { return size == 0; } // 判断该二叉树是否为二分搜索树 public boolean isBST() { ArrayList<K> keys = new ArrayList<>(); inOrder(root, keys); for (int i = 1; i < keys.size(); i++) { if (keys.get(i - 1).compareTo(keys.get(i)) > 0) { return false; } } return true; } private void inOrder(Node node, ArrayList<K> keys) { if (node == null) { return; } inOrder(node.left, keys); keys.add(node.key); inOrder(node.right, keys); } // 判断二叉树是否为平衡二叉树 public boolean isBalanced() { return isBalanced(root); } // 判断以node为根的二叉树是否为平衡二叉树 private boolean isBalanced(Node node) { if (node == null) { return true; } int balanceFactor = getBalanceFactor(node); if (Math.abs(balanceFactor) > 1) { return false; } return isBalanced(node.left) && isBalanced(node.right); } // 返回节点node的高度值 private int getHeight(Node node) { if (node == null) { return 0; } return node.height; } // 返回节点node的平衡因子 private int getBalanceFactor(Node node) { if (node == null) { return 0; } return getHeight(node.left) - getHeight(node.right); } // 对节点y进行向右旋转操作,返回旋转后新的根节点x // y x // / / // x T4 向右旋转 (y) z y // / - - - - - - - -> / / // z T3 T1 T2 T3 T4 // / // T1 T2 private Node rightRotate(Node y) { Node x = y.left; Node T3 = x.right; // 向右旋转 x.right = y; y.left = T3; // 更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1; return x; } // 对节点y进行向左旋转操作,返回旋转后新的根节点x // y x // / / // T1 x 向左旋转 (y) y z // / - - - - - - - -> / / // T2 z T1 T2 T3 T4 // / // T3 T4 private Node leftRotate(Node y) { Node x = y.right; Node T2 = x.left; // 向左旋转 x.left = y; y.right = T2; //更新height y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1; x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1; return x; } // 实现add方法 public void add(K key, V value) { root = add(root, key, value); } // 向以node为根节点的二分搜索树中插入元素(key, value),递归算法 // 返回插入新元素后的二分搜索树的根 private Node add(Node node, K key, V value) { if (node == null) { size++; return new Node(key, value); } if (key.compareTo(node.key) < 0) { node.left = add(node.left, key, value); } else if (key.compareTo(node.key) > 0) { node.right = add(node.right, key, value); } else { node.value = value; } // 更新height值 node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right)); // 计算平衡因子 int balanceFactor = getBalanceFactor(node); // 平衡维护 // LL if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) { return rightRotate(node); } // RR if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) { return leftRotate(node); } // LR if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) { node.left = leftRotate(node.left); return rightRotate(node); } // RL if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) { node.right = rightRotate(node.right); return leftRotate(node); } return node; } // 返回以node为根节点的二分搜索树中,key所在的节点 private Node getNode(Node node, K key) { if (node == null) return null; if (key.compareTo(node.key) < 0) { return getNode(node.left, key); } else if (key.compareTo(node.key) > 0) { return getNode(node.right, key); } else { return node; } } public boolean contains(K key) { return getNode(root, key) != null; } public V get(K key) { Node node = getNode(root, key); return node == null ? null : node.value; } public void set(K key, V newValue) { Node node = getNode(root, key); if (node == null) throw new IllegalArgumentException(key + " doesn‘t exist!"); node.value = newValue; } // 返回以node为根的二分搜索树的最小元素所在节点 private Node minimum(Node node) { if (node.left == null) { return node; } return minimum(node.left); } // 实现remove方法 // 删除二分搜索树中键为key的节点 public V remove(K key) { Node node = getNode(root, key); if (node != null) { root = remove(root, key); return node.value; } return null; } // 删除以node为根节点的二分搜索树中键为key的节点,递归算法 // 返回删除节点后新的二分搜索树的根 private Node remove(Node node, K key) { if (node == null) { return null; } Node retNode; if (key.compareTo(node.key) < 0) { node.left = remove(node.left, key); retNode = node; } else if (key.compareTo(node.key) > 0) { node.right = remove(node.right, key); retNode = node; } else { // 待删除节点左子树为空的情况 if (node.left == null) { Node rightNode = node.right; node.right = null; size--; retNode = rightNode; // 待删除节点右子树为空的情况 } else if (node.right == null) { Node leftNode = node.left; node.left = null; size--; retNode = leftNode; // 待删除节点左右子树均不为空 // 找到比待删除节点大的最小节点,即待删除节点右子树的最小节点 // 用这个节点顶替待删除节点 } else { Node successor = minimum(node.right); successor.right = remove(node.right, successor.key); //这里进行了size--操作 successor.left = node.left; node.left = null; node.right = null; retNode = successor; } } if (retNode == null) { return null; } // 更新height值 retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right)); // 计算平衡因子 int balanceFactor = getBalanceFactor(retNode); // 平衡维护 // LL if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) { return rightRotate(retNode); } // RR if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) { return leftRotate(retNode); } // LR if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) { node.left = leftRotate(retNode.left); return rightRotate(retNode); } // RL if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) { node.right = rightRotate(retNode.right); return leftRotate(retNode); } return retNode; } // 打印测试 public static void main(String[] args) { System.out.println("Pride and Prejudice"); ArrayList<String> words = new ArrayList<>(); if (FileOperation.readFile("pride-and-prejudice.txt", words)) { System.out.println("Total words: " + words.size()); AVLTree<String, Integer> map = new AVLTree<>(); for (String word : words) { if (map.contains(word)) { map.set(word, map.get(word) + 1); } else { map.add(word, 1); } } System.out.println("Total different words: " + map.getSize()); System.out.println("Frequency of PRIDE: " + map.get("pride")); System.out.println("Frequency of PREJUDICE: " + map.get("prejudice")); System.out.println("is BST: " + map.isBST()); System.out.println("is Balanced: " + map.isBalanced()); } } }
以上是关于第三十二篇 玩转数据结构——AVL树的主要内容,如果未能解决你的问题,请参考以下文章