[学习记录]sklearn线性回归

Posted trickofjoker

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[学习记录]sklearn线性回归相关的知识,希望对你有一定的参考价值。

本文旨在记录colin老师workshop的exercise1讲解,包含入门级的sklearn操作

 

首先导入库

import numpy as np
import pandas as pd
import scipy.stas as stats
import sklearn

其次导入数据,这里使用的是sklearn中内置的数据集

from sklearn.datasets import load_boston
boston=load_boston()

使用pandas整理数据

技术分享图片

pandas可以用来求相关性,取值为-1~1之间,-1为负相关,1为正相关,靠近0则是不相关。其中如果相关性低于0.5则应该考虑换一个参考模型。

技术分享图片

 进行线性回归训练

技术分享图片

对照测试集进行检验,检验的时候有三个重要指标,三个指标均越小越好

MAE:mean absolute error,预测时发生的平均偏差,取绝对值

MSE:mean squared error,对预测时产生的偏差进行平方处理,导致错误重度惩罚,正确轻度奖励

RMSE:root mean squared error,相当于对MSE结果开平方根

技术分享图片

之前介绍的模型是一个自变量一个因变量,也支持多个自变量,就结果来看该模型不如上一个准确

技术分享图片

 

以上是关于[学习记录]sklearn线性回归的主要内容,如果未能解决你的问题,请参考以下文章

sklearn实现一元线性回归 Python机器学习系列

机器学习:Sklearn库中linear_model线性模型中‘LinearRegression‘线性回归源码理解

sklearn学习笔记之简单线性回归

sklearn机器学习之线性回归模型

用 Sklearn 和 Pandas 学习线性回归

sklearn 线性回归中没有学习率和迭代次数