PAT 1146 Topological Order
Posted mr-stn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT 1146 Topological Order相关的知识,希望对你有一定的参考价值。
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
1 #include<iostream> 2 #include<vector> 3 using namespace std; 4 int n, k, m; 5 vector<int> inDegree(1001, 0); 6 vector< int> Adj[1001], v(1001); 7 int main(){ 8 int i, j; 9 cin>>n>>m; 10 for(i=1; i<=m; i++){ 11 int v, u; 12 cin>>v>>u; 13 inDegree[u]++; 14 Adj[v].push_back(u); 15 } 16 cin>>k; 17 vector<int> ans; 18 for(i=0; i<k; i++){ 19 for(j=0; j<n; j++) cin>>v[j]; 20 bool flag=true; 21 vector<int> temp(1001, 0); 22 for(j=0; j<n; j++){ 23 if(temp[v[j]]==inDegree[v[j]]){ 24 for(int idx=0; idx<Adj[v[j]].size(); idx++) temp[Adj[v[j]][idx]]++; 25 }else{ 26 flag = false; 27 break; 28 } 29 } 30 if(!flag) ans.push_back(i); 31 } 32 cout<<ans[0]; 33 for(i=1; i<ans.size(); i++) cout<<" "<<ans[i]; 34 return 0; 35 }
以上是关于PAT 1146 Topological Order的主要内容,如果未能解决你的问题,请参考以下文章
PAT甲级——1146 Topological Order (25分)
PAT Advanced 1146 Topological Order (25) [拓扑排序]